File size: 4,507 Bytes
4723159
78d8c4b
 
4723159
 
 
 
 
fec6b29
 
4723159
78d8c4b
 
4723159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7588
 
 
 
4723159
 
78d8c4b
 
4723159
 
 
78d8c4b
4723159
 
78d8c4b
 
4723159
e9ba9c7
 
 
4723159
 
78d8c4b
4723159
78d8c4b
4723159
 
78d8c4b
4e85810
78d8c4b
 
 
 
90f022c
 
4723159
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import spaces
# from transformers import Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForZeroShotObjectDetection
from transformers import Owlv2Processor, Owlv2ForObjectDetection
import torch
import gradio as gr

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

owl_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to("cuda")
owl_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")

# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to("cuda")

@spaces.GPU
def infer(img, text_queries, score_threshold, model):
  
  if model == "dino":
    queries=""
    for query in text_queries:
      queries += f"{query}. "

    width, height = img.shape[:2]

    target_sizes=[(width, height)]
    inputs = dino_processor(text=queries, images=img, return_tensors="pt").to(device)

    with torch.no_grad():
      outputs = dino_model(**inputs)
      outputs.logits = outputs.logits.cpu()
      outputs.pred_boxes = outputs.pred_boxes.cpu()
      results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids,
                                                                    box_threshold=score_threshold,
                                                                    target_sizes=target_sizes)
  elif model == "owl":
    size = max(img.shape[:2])
    target_sizes = torch.Tensor([[size, size]])
    inputs = owl_processor(text=text_queries, images=img, return_tensors="pt").to(device)

    with torch.no_grad():
      outputs = owl_model(**inputs)
      outputs.logits = outputs.logits.cpu()
      outputs.pred_boxes = outputs.pred_boxes.cpu()
      results = owl_processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
      
  boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
  result_labels = []

  for box, score, label in zip(boxes, scores, labels):
      box = [int(i) for i in box.tolist()]
      if score < score_threshold:
          continue
      if model == "owl":
        label = text_queries[label.cpu().item()]
        result_labels.append((box, label))
      elif model == "dino":
        if label != "":
            result_labels.append((box, label))
  return result_labels

# def query_image(img, text_queries, owl_threshold, dino_threshold):
def query_image(img, text_queries, owl_threshold):
    text_queries = text_queries
    text_queries = text_queries.split(",")
    owl_output = infer(img, text_queries, owl_threshold, "owl")
    # dino_output = infer(img, text_queries, dino_threshold, "dino")


    # return (img, owl_output), (img, dino_output)
    return (img, owl_output)

english_candidate_labels = ["hat", "sunglass", "hair band", "glove", "arm sleeve", "watch", "singlet", "t-shirts", "energy gel", "half pants", "socks", "shoes"]
korean_candidate_labels = ["๋ชจ์ž", "์ฌ๊ธ€๋ผ์Šค", "ํ—ค์–ด๋ฐด๋“œ", "์žฅ๊ฐ‘", "ํŒ”ํ† ์‹œ", "์‹œ๊ณ„", "์‹ฑ๊ธ€๋ ›", "ํ‹ฐ์…”์ธ ", "์—๋„ˆ์ง€์ ค", "์‡ผ์ธ ๋ฐ”์ง€", "์–‘๋ง", "์‹ ๋ฐœ"]
english_candidate_labels_string = ",".join(english_candidate_labels)

owl_threshold = gr.Slider(0, 1, value=0.16, label="OWL Threshold")
# dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold")
owl_output = gr.AnnotatedImage(label="OWL Output")
# dino_output = gr.AnnotatedImage(label="Grounding DINO Output")
demo = gr.Interface(
    query_image,
    # inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels"), owl_threshold, dino_threshold],
    inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels", value=english_candidate_labels_string), owl_threshold],
    # outputs=[owl_output, dino_output],
    outputs=[owl_output],
    title="OWLv2 Demo",
    description="Compare two state-of-the-art zero-shot object detection models [OWLv2](https://huggingface.co/google/owlv2-base-patch16) . Simply enter an image and the objects you want to find with comma, or try one of the examples. Play with the threshold to filter out low confidence predictions in each model.",
    # examples=[["./bee.jpg", "bee, flower", 0.16, 0.12], ["./cats.png", "cat, fishnet", 0.16, 0.12]]
    examples=[["./rs_sample1.jpg", english_candidate_labels_string, 0.16, 0.12], ["./rs_sample2.jpg", english_candidate_labels_string, 0.16, 0.12]]
)
demo.launch(debug=True)