Spaces:
Sleeping
Sleeping
Sync App files
Browse files- README.md +6 -9
- drug_app.py +74 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
---
|
2 |
title: Drug Classification
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
|
12 |
-
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Drug Classification
|
3 |
+
emoji: π
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.16.0
|
8 |
+
app_file: drug_app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
---
|
|
|
|
|
|
drug_app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import skops.io as sio
|
3 |
+
import warnings
|
4 |
+
from sklearn.exceptions import InconsistentVersionWarning
|
5 |
+
|
6 |
+
# Suppress the version warnings
|
7 |
+
warnings.filterwarnings("ignore", category=InconsistentVersionWarning)
|
8 |
+
|
9 |
+
# Explicitly specify trusted types
|
10 |
+
trusted_types = [
|
11 |
+
"sklearn.pipeline.Pipeline",
|
12 |
+
"sklearn.preprocessing.OneHotEncoder",
|
13 |
+
"sklearn.preprocessing.StandardScaler",
|
14 |
+
"sklearn.compose.ColumnTransformer",
|
15 |
+
"sklearn.preprocessing.OrdinalEncoder",
|
16 |
+
"sklearn.impute.SimpleImputer",
|
17 |
+
"sklearn.tree.DecisionTreeClassifier",
|
18 |
+
"sklearn.ensemble.RandomForestClassifier",
|
19 |
+
"numpy.dtype",
|
20 |
+
]
|
21 |
+
pipe = sio.load("./Model/drug_pipeline.skops", trusted=trusted_types)
|
22 |
+
|
23 |
+
|
24 |
+
def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
|
25 |
+
"""Predict drugs based on patient features.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
age (int): Age of patient
|
29 |
+
sex (str): Sex of patient
|
30 |
+
blood_pressure (str): Blood pressure level
|
31 |
+
cholesterol (str): Cholesterol level
|
32 |
+
na_to_k_ratio (float): Ratio of sodium to potassium in blood
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: Predicted drug label
|
36 |
+
"""
|
37 |
+
features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
|
38 |
+
predicted_drug = pipe.predict([features])[0]
|
39 |
+
|
40 |
+
label = f"Predicted Drug: {predicted_drug}"
|
41 |
+
return label
|
42 |
+
|
43 |
+
|
44 |
+
inputs = [
|
45 |
+
gr.Slider(15, 74, step=1, label="Age"),
|
46 |
+
gr.Radio(["M", "F"], label="Sex"),
|
47 |
+
gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
|
48 |
+
gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
|
49 |
+
gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
|
50 |
+
]
|
51 |
+
outputs = [gr.Label(num_top_classes=5)]
|
52 |
+
|
53 |
+
examples = [
|
54 |
+
[30, "M", "HIGH", "NORMAL", 15.4],
|
55 |
+
[35, "F", "LOW", "NORMAL", 8],
|
56 |
+
[50, "M", "HIGH", "HIGH", 34],
|
57 |
+
]
|
58 |
+
|
59 |
+
|
60 |
+
title = "Drug Classification"
|
61 |
+
description = "Enter the details to correctly identify Drug type?"
|
62 |
+
article = "This app is a part of the **[Beginner's Guide to CI/CD for Machine Learning](https://www.datacamp.com/tutorial/ci-cd-for-machine-learning)**. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
|
63 |
+
|
64 |
+
|
65 |
+
gr.Interface(
|
66 |
+
fn=predict_drug,
|
67 |
+
inputs=inputs,
|
68 |
+
outputs=outputs,
|
69 |
+
examples=examples,
|
70 |
+
title=title,
|
71 |
+
description=description,
|
72 |
+
article=article,
|
73 |
+
theme=gr.themes.Soft(),
|
74 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
skops
|