Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,26 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
processed_image = render_results_in_image(pil_image,
|
20 |
-
pipeline_output)
|
21 |
-
|
22 |
-
return processed_image
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
type="pil")
|
31 |
-
)
|
32 |
-
|
33 |
-
demo.launch
|
|
|
1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
|
6 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
7 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
8 |
|
9 |
+
# you can specify the revision tag if you don't want the timm dependency
|
10 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
11 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
12 |
|
13 |
+
inputs = processor(images=image, return_tensors="pt")
|
14 |
+
outputs = model(**inputs)
|
15 |
|
16 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
17 |
+
# let's only keep detections with score > 0.9
|
18 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
22 |
+
box = [round(i, 2) for i in box.tolist()]
|
23 |
+
print(
|
24 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
25 |
+
f"{round(score.item(), 3)} at location {box}"
|
26 |
+
)
|
|
|
|
|
|
|
|