Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
def draw_detections(image, detections): | |
# Convert PIL image to a numpy array | |
np_image = np.array(image) | |
# Convert RGB to BGR for OpenCV | |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR) | |
for detection in detections: | |
# Extract scores, labels, and bounding boxes correctly | |
score = detection['score'] | |
label = detection['label'] | |
box = detection['box'] | |
x_min = box['xmin'] | |
y_min = box['ymin'] | |
x_max = box['xmax'] | |
y_max = box['ymax'] | |
# Draw rectangles and text on the image | |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) | |
cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) | |
# Convert BGR to RGB for displaying | |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) | |
# Convert the numpy array to PIL Image | |
final_pil_image = Image.fromarray(final_image) | |
return final_pil_image | |
demo = gr.Interface( | |
fn=get_pipeline_prediction, | |
inputs=gr.Image(label="Input image", type="pil"), | |
outputs=[ | |
gr.Image(label="Annotated Image"), | |
gr.JSON(label="Detected Objects") | |
] | |
) | |
demo.launch() |