Object_detection / app_v2.py
Gabolozano's picture
Update app_v2.py
aca9f11 verified
raw
history blame
1.44 kB
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
import numpy as np
import cv2
from PIL import Image
def draw_detections(image, detections):
# Convert PIL image to a numpy array
np_image = np.array(image)
# Convert RGB to BGR for OpenCV
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
for detection in detections:
# Extract scores, labels, and bounding boxes correctly
score = detection['score']
label = detection['label']
box = detection['box']
x_min = box['xmin']
y_min = box['ymin']
x_max = box['xmax']
y_max = box['ymax']
# Draw rectangles and text on the image
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Convert BGR to RGB for displaying
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
# Convert the numpy array to PIL Image
final_pil_image = Image.fromarray(final_image)
return final_pil_image
demo = gr.Interface(
fn=get_pipeline_prediction,
inputs=gr.Image(label="Input image", type="pil"),
outputs=[
gr.Image(label="Annotated Image"),
gr.JSON(label="Detected Objects")
]
)
demo.launch()