Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
def draw_detections(image, detections): | |
# Convert PIL image to a numpy array | |
np_image = np.array(image) | |
# Convert RGB to BGR for OpenCV | |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR) | |
for detection in detections: | |
# Extract scores, labels, and bounding boxes properly | |
score = detection['score'] | |
label = detection['label'] | |
box = detection['boxes'] # Make sure 'boxes' data structure matches expected in terms of naming and indexing | |
x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]]) | |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) | |
cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) | |
# Convert BGR to RGB for displaying | |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) | |
# Convert the numpy array to PIL Image | |
final_pil_image = Image.fromarray(final_image) | |
return final_pil_image | |
# Initialize objects from transformers | |
config = DetrConfig.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) | |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor) | |
def get_pipeline_prediction(pil_image): | |
try: | |
# Run the object detection pipeline | |
pipeline_output = od_pipe(pil_image) | |
# Draw the detection results on the image | |
processed_image = draw_detections(pil_image, pipeline_output) | |
# Provide both the image and the JSON detection results | |
return processed_image, pipeline_output | |
except Exception as e: | |
# Log the error | |
print(f"An error occurred: {str(e)}") | |
# Return a message and an empty JSON | |
return pil_image, {"error": str(e)} | |
##def get_pipeline_prediction(pil_image): | |
## try: | |
# Run the object detection pipeline | |
## pipeline_output = od_pipe(pil_image) | |
# Debugging: print the keys in the output dictionary | |
## if pipeline_output: | |
## print("Keys available in the detection output:", pipeline_output[0].keys()) | |
# Draw the detection results on the image | |
## processed_image = draw_detections(pil_image, pipeline_output) | |
# Provide both the image and the JSON detection results | |
## return processed_image, pipeline_output | |
## except Exception as e: | |
# Log the error | |
#3 print(f"An error occurred: {str(e)}") | |
# Return a message and an empty JSON | |
## return pil_image, {"error": str(e)} | |
demo = gr.Interface( | |
fn=get_pipeline_prediction, | |
inputs=gr.Image(label="Input image", type="pil"), | |
outputs=[ | |
gr.Image(label="Annotated Image"), | |
gr.JSON(label="Detected Objects") | |
] | |
) | |
demo.launch() | |