File size: 1,327 Bytes
d4c3acc
 
 
 
c21a752
d4c3acc
 
6564a3a
d4c3acc
 
6564a3a
d4c3acc
 
dba19bd
d4c3acc
 
 
 
 
 
 
 
 
c21a752
d4c3acc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import gradio as gr
from transformers import pipeline
from transformers import DetrForObjectDetection, DetrConfig

# Initialize the configuration for DetrForObjectDetection
config = DetrConfig.from_pretrained("facebook/detr-resnet-50")

# Create the model for object detection using the specified configuration
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)

# Initialize the object detection pipeline
od_pipe = pipeline(task='object-detection', model=model)

def get_pipeline_prediction(pil_image):
    # Run the object detection pipeline on the input image
    pipeline_output = od_pipe(pil_image)
    
    # You might need to implement or adjust the rendering function based on the `pipeline_output`
    # The `render_results_in_image` function is assumed here to draw bounding boxes and labels on the input image,
    # but you'll need to define it according to your specific needs. 
    # For now, the output is directly returned since the question doesn't define `render_results_in_image`.
    return pipeline_output

demo = gr.Interface(
  fn=get_pipeline_prediction,
  inputs=gr.Image(label="Input image", 
                  type="pil"),
  outputs=gr.JSON(label="Detected objects")  # Adjusted to show JSON output if rendering function is not defined
)

demo.launch()