GVAmaresh commited on
Commit
7ef4b83
·
1 Parent(s): 1a7861d

dev check working

Browse files
Files changed (1) hide show
  1. app.py +56 -2
app.py CHANGED
@@ -10,6 +10,60 @@ def greet_json():
10
 
11
  #--------------------------------------------------------------------------------------------------------------------
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  import os
14
  import numpy as np
15
  import tensorflow as tf
@@ -32,8 +86,8 @@ class UnifiedDeepfakeDetector:
32
  def __init__(self):
33
  self.input_shape = (224, 224, 3)
34
  self.vgg_model = self.build_vgg16_model()
35
- self.dense_model = tf.keras.models.load_model('deepfake_detection_model.h5')
36
- self.cnn_model = tf.keras.models.load_model('audio_deepfake_detection_model_cnn.h5')
37
  self.melody_machine = pipeline(model="MelodyMachine/Deepfake-audio-detection-V2")
38
 
39
  def build_vgg16_model(self):
 
10
 
11
  #--------------------------------------------------------------------------------------------------------------------
12
 
13
+ import os
14
+ import gdown
15
+
16
+ file_id = "1zhisRgRi2qBFX73VFhzh-Ho93MORQqVa"
17
+ output_dir = "./downloads"
18
+ output_file = "file.h5"
19
+
20
+ if not os.path.exists(output_dir):
21
+ os.makedirs(output_dir)
22
+
23
+ output_path = os.path.join(output_dir, output_file)
24
+
25
+ url = f"https://drive.google.com/uc?id={file_id}"
26
+
27
+ try:
28
+ gdown.download(url, output_path, quiet=False)
29
+ print(f"File downloaded successfully to: {output_path}")
30
+ except Exception as e:
31
+ print(f"Error downloading file: {e}")
32
+
33
+ output_file = "file.h5"
34
+ file_path = os.path.join(output_dir, output_file)
35
+
36
+
37
+ #--------------------------------------------------------------------------------------------------------------------
38
+
39
+ file_id = "1wIaycDFGTF3e0PpAHKk-GLnxk4cMehOU"
40
+ output_dir = "./downloads"
41
+ output_file = "file2.h5"
42
+
43
+ if not os.path.exists(output_dir):
44
+ os.makedirs(output_dir)
45
+
46
+ output_path = os.path.join(output_dir, output_file)
47
+
48
+ url = f"https://drive.google.com/uc?id={file_id}"
49
+
50
+ try:
51
+ gdown.download(url, output_path, quiet=False)
52
+ print(f"File downloaded successfully to: {output_path}")
53
+ except Exception as e:
54
+ print(f"Error downloading file: {e}")
55
+
56
+ output_file = "file2.h5"
57
+ file_path = os.path.join(output_dir, output_file)
58
+
59
+
60
+ if os.path.exists(file_path):
61
+ print(f"The file '{output_file}' exists at '{file_path}'.")
62
+ else:
63
+ print(f"The file '{output_file}' does not exist at '{file_path}'.")
64
+
65
+ #--------------------------------------------------------------------------------------------------------------------
66
+
67
  import os
68
  import numpy as np
69
  import tensorflow as tf
 
86
  def __init__(self):
87
  self.input_shape = (224, 224, 3)
88
  self.vgg_model = self.build_vgg16_model()
89
+ self.dense_model = tf.keras.models.load_model('file.h5')
90
+ self.cnn_model = tf.keras.models.load_model('file2.h5')
91
  self.melody_machine = pipeline(model="MelodyMachine/Deepfake-audio-detection-V2")
92
 
93
  def build_vgg16_model(self):