Spaces:
Sleeping
Sleeping
GVAmaresh
commited on
Commit
·
582d273
1
Parent(s):
4a2f439
dev check working
Browse files
app.py
CHANGED
|
@@ -296,3 +296,95 @@ def reencode_audio(input_path, output_path):
|
|
| 296 |
]
|
| 297 |
subprocess.run(command, check=True)
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
]
|
| 297 |
subprocess.run(command, check=True)
|
| 298 |
|
| 299 |
+
#--------------------------------------------------------------------------------------------------------------------
|
| 300 |
+
from collections import Counter
|
| 301 |
+
from datetime import datetime
|
| 302 |
+
|
| 303 |
+
@app.post("/upload")
|
| 304 |
+
async def upload_file(file: UploadFile = File(...)):
|
| 305 |
+
print(f"Received file: {file.filename}")
|
| 306 |
+
|
| 307 |
+
original_filename = file.filename.rsplit('.', 1)[0]
|
| 308 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 309 |
+
wav_filename = os.path.join(SAVE_DIR, f"{timestamp}.wav")
|
| 310 |
+
reencoded_filename = os.path.join(SAVE_DIR, f"{timestamp}_reencoded.wav")
|
| 311 |
+
|
| 312 |
+
# os.makedirs(SAVE_DIR, exist_ok=True)
|
| 313 |
+
with open(wav_filename, "wb") as buffer:
|
| 314 |
+
shutil.copyfileobj(file.file, buffer)
|
| 315 |
+
|
| 316 |
+
reencode_audio(wav_filename, reencoded_filename)
|
| 317 |
+
os.remove(wav_filename)
|
| 318 |
+
print(f"File successfully re-encoded as: {reencoded_filename}")
|
| 319 |
+
|
| 320 |
+
try:
|
| 321 |
+
audio, sr = librosa.load(reencoded_filename, sr=None)
|
| 322 |
+
print("Loaded successfully with librosa")
|
| 323 |
+
except Exception as e:
|
| 324 |
+
print(f"Error loading re-encoded file: {e}")
|
| 325 |
+
new_features = extract_features(reencoded_filename)
|
| 326 |
+
prediction, entropy = classify_audio(new_features)
|
| 327 |
+
with open(reencoded_filename, "rb") as audio_file:
|
| 328 |
+
audio_data = audio_file.read()
|
| 329 |
+
|
| 330 |
+
# audio_base64 = base64.b64encode(audio_data).decode('utf-8')
|
| 331 |
+
os.remove(reencoded_filename)
|
| 332 |
+
return JSONResponse(content={
|
| 333 |
+
"prediction": bool(prediction),
|
| 334 |
+
"entropy": float(entropy),
|
| 335 |
+
})
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
@app.post("/upload_audio")
|
| 339 |
+
async def upload_file(file: UploadFile = File(...)):
|
| 340 |
+
print(f"Received file: {file.filename}")
|
| 341 |
+
|
| 342 |
+
original_filename = file.filename.rsplit('.', 1)[0]
|
| 343 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 344 |
+
wav_filename = os.path.join(SAVE_DIR, f"{timestamp}.wav")
|
| 345 |
+
reencoded_filename = os.path.join(SAVE_DIR, f"{timestamp}_reencoded.wav")
|
| 346 |
+
|
| 347 |
+
# os.makedirs(SAVE_DIR, exist_ok=True)
|
| 348 |
+
with open(wav_filename, "wb") as buffer:
|
| 349 |
+
shutil.copyfileobj(file.file, buffer)
|
| 350 |
+
|
| 351 |
+
reencode_audio(wav_filename, reencoded_filename)
|
| 352 |
+
|
| 353 |
+
os.remove(wav_filename)
|
| 354 |
+
print(f"File successfully re-encoded as: {reencoded_filename}")
|
| 355 |
+
|
| 356 |
+
try:
|
| 357 |
+
audio, sr = librosa.load(reencoded_filename, sr=None)
|
| 358 |
+
print("Loaded successfully with librosa")
|
| 359 |
+
except Exception as e:
|
| 360 |
+
print(f"Error loading re-encoded file: {e}")
|
| 361 |
+
new_features = extract_features(reencoded_filename)
|
| 362 |
+
detector = UnifiedDeepfakeDetector()
|
| 363 |
+
print(reencoded_filename)
|
| 364 |
+
result = detector.analyze_audio_rf(reencoded_filename, model_choice="all")
|
| 365 |
+
prediction, entropy = classify_audio(new_features)
|
| 366 |
+
with open(reencoded_filename, "rb") as audio_file:
|
| 367 |
+
audio_data = audio_file.read()
|
| 368 |
+
result = list(result)
|
| 369 |
+
result.append("FAKE" if float(entropy) < 150 else "REAL")
|
| 370 |
+
print(result)
|
| 371 |
+
r_normalized = [x.upper() for x in result]
|
| 372 |
+
counter = Counter(r_normalized)
|
| 373 |
+
|
| 374 |
+
most_common_element, _ = counter.most_common(1)[0]
|
| 375 |
+
|
| 376 |
+
print(f"The most frequent element is: {most_common_element}")
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
audio_base64 = base64.b64encode(audio_data).decode('utf-8')
|
| 380 |
+
print(f"Audio Data Length: {len(audio_data)}")
|
| 381 |
+
|
| 382 |
+
os.remove(reencoded_filename)
|
| 383 |
+
return JSONResponse(content={
|
| 384 |
+
"filename": file.filename,
|
| 385 |
+
"prediction": most_common_element.upper(),
|
| 386 |
+
"entropy": float(entropy),
|
| 387 |
+
"audio": audio_base64,
|
| 388 |
+
"content_type": "audio/wav"
|
| 389 |
+
})
|
| 390 |
+
|