GVAmaresh
dev check working
5187bce
raw
history blame
1.86 kB
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
]
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def cosine_similarity(u, v):
return F.cosine_similarity(u, v, dim=1)
def compare(text1, text2):
sentences = [text1, text2]
tokenizer = AutoTokenizer.from_pretrained("dmlls/all-mpnet-base-v2-negation")
model = AutoModel.from_pretrained("dmlls/all-mpnet-base-v2-negation")
encoded_input = tokenizer(
sentences, padding=True, truncation=True, return_tensors="pt"
)
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
similarity_score = cosine_similarity(
sentence_embeddings[0].unsqueeze(0), sentence_embeddings[1].unsqueeze(0)
)
return similarity_score.item()
#--------------------------------------------------------------------------------------------------------------------
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
def greet_json():
return {"Hello": "World!"}
#--------------------------------------------------------------------------------------------------------------------
from transformers import pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
def Summerized_Text(text):
text = text.strip()
a = summarizer(text, max_length=130, min_length=30, do_sample=False)
print(a)
return a[0]['summary_text']