Spaces:
Sleeping
Sleeping
File size: 4,382 Bytes
ddd31fd 5b9c013 ddd31fd 8855170 c7d003b 8855170 ddd31fd 3260d15 ddd31fd 983aa48 ddd31fd 667e07a ddd31fd 667e07a 8855170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
from __future__ import division, print_function
from six import StringIO
from svgpath2mpl import parse_path
from collections import defaultdict
from src.pred_plot import hour_rounder
import xml.etree.ElementTree as etree
import re
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import requests
import pandas as pd
import datetime
import warnings
warnings.filterwarnings("ignore")
def calling_pred_map_viz(counts_df1):
r = "svg/snazzy-image-01.svg"
tree = etree.parse(r)
root = tree.getroot()
path_elems = root.findall('.//{http://www.w3.org/2000/svg}path')
paths = [parse_path(elem.attrib['d']) for elem in path_elems]
facecolors = []
edgecolors = []
linewidths = []
for elem in path_elems:
facecolors.append(dict(item.split(":") for item in elem.attrib.get('style', 'none').split(";")).get("fill", "none"))
edgecolors.append(dict(item.split(":") for item in elem.attrib.get('style', 'none').split(";")).get("stroke", "none"))
linewidths.append(dict(item.split(":") for item in elem.attrib.get('style', 'none').split(";")).get("stroke-width", "none").replace("px", ""))
path_id = defaultdict(int)
for i, elem in enumerate(path_elems):
try:
#print(i, elem.attrib['id'])
path_id[elem.attrib['id']] = i
except:
continue
counts_df1['total'] = counts_df1['car'] + counts_df1['motorcycle'] + counts_df1['large_vehicle']
counts_df1.loc[:,'date_time'] = pd.to_datetime(counts_df1.loc[:,'date'] + " "+ counts_df1.loc[:,'time'], format='%Y-%m-%d %H:%M:%S')
counts_df1.loc[:,'hour'] = counts_df1.loc[:,'date_time'].apply(hour_rounder)
counts_df1.loc[:,'day_name'] = counts_df1.loc[:,'date_time'].dt.day_name()
filtered_date = counts_df1.iloc[-1]['date']
filtered_time = counts_df1.iloc[-1]['time']
filtered_day = counts_df1.iloc[-1]['day_name']
filtered_hour = counts_df1.iloc[-1]['hour']
day_hour_view_group = counts_df1.groupby(by=['view', 'day_name', 'hour'])['total'].mean().reset_index()
count_max = day_hour_view_group['total'].max()
count_min = day_hour_view_group['total'].min()
count_dict = {"woodlands_to_sg" :day_hour_view_group.loc[(day_hour_view_group['view'] == 'Woodlands - to SG') & (day_hour_view_group['day_name'] == filtered_day) & (day_hour_view_group['hour'] == filtered_hour), "total" ].iloc[0],
"woodlands_to_jh" :day_hour_view_group.loc[(day_hour_view_group['view'] == 'Woodlands - to Johor') & (day_hour_view_group['day_name'] == filtered_day) & (day_hour_view_group['hour'] == filtered_hour), "total" ].iloc[0],
"tuas_to_sg" :day_hour_view_group.loc[(day_hour_view_group['view'] == 'Tuas - to SG') & (day_hour_view_group['day_name'] == filtered_day) & (day_hour_view_group['hour'] == filtered_hour), "total" ].iloc[0],
"tuas_to_jh" :day_hour_view_group.loc[(day_hour_view_group['view'] == 'Tuas - to Johor') & (day_hour_view_group['day_name'] == filtered_day) & (day_hour_view_group['hour'] == filtered_hour), "total" ].iloc[0]
}
values = np.array([0., 0.5, 1.])
values = np.sort(np.array(values))
values = np.interp(values, (values.min(), values.max()), (0., 1.))
colors = ["#539f6b", "#ffc835", "#bf0000"]
cmap = mpl.colors.LinearSegmentedColormap.from_list("custom", list(zip(values, colors)))
norm = mpl.colors.Normalize(vmin=count_min, vmax=count_max)
hex_dict = {k: mpl.colors.to_hex(cmap(norm(v))) for k, v in count_dict.items()}
color_dict = defaultdict(str)
for k, i in path_id.items():
#print(k, i)
color_dict[i] = hex_dict[k]
for k, i in color_dict.items():
#print(k,i)
facecolors[k] = i
collection = mpl.collections.PathCollection(paths,
edgecolors=edgecolors,
linewidths=[int(i)/100 for i in linewidths if i != 'none'],
facecolors=[i.strip() for i in facecolors])
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111)
collection.set_transform(ax.transData)
ax.add_artist(collection)
ax.set_xlim([100, 1900])
ax.set_ylim([1800, 0])
ax.set_title(filtered_day+ " | " + filtered_hour + " SGT", fontname = 'Georgia')
return fig
|