Spaces:
Runtime error
Runtime error
Commit
·
f27c318
1
Parent(s):
1423dfb
Update app.py
Browse files
app.py
CHANGED
@@ -55,12 +55,6 @@ def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensi
|
|
55 |
HighestSimilarity = predictions.nlargest(N, ['Score'])
|
56 |
|
57 |
def sentence_embedder(sentences, model_path):
|
58 |
-
"""
|
59 |
-
Calling the sentence similarity model to generate embeddings on input text.
|
60 |
-
:param sentences: takes input text in the form of a string
|
61 |
-
:param model_path: path to the text similarity model
|
62 |
-
:return returns a (1, 384) embedding of the input text
|
63 |
-
"""
|
64 |
tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library
|
65 |
model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance
|
66 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
55 |
HighestSimilarity = predictions.nlargest(N, ['Score'])
|
56 |
|
57 |
def sentence_embedder(sentences, model_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library
|
59 |
model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|