thepolymerguy commited on
Commit
906763f
·
1 Parent(s): b56fd2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py CHANGED
@@ -30,41 +30,10 @@ def bot(history):
30
  history[-1][1] = response
31
  return history
32
 
33
- """
34
-
35
- Place holder alpaca model trained example:
36
- Required:
37
- !pip install -q datasets loralib sentencepiece
38
- !pip install -q git+https://github.com/zphang/transformers@c3dc391
39
- !pip install bitsandbytes
40
-
41
- """
42
-
43
- '''
44
-
45
- tokenizer = LLaMATokenizer.from_pretrained("chavinlo/alpaca-native")
46
-
47
- model = LLaMAForCausalLM.from_pretrained(
48
- "chavinlo/alpaca-native",
49
- load_in_8bit=True,
50
- device_map="auto",
51
- )
52
- '''
53
 
54
  ########## LOADING PRE-COMPUTED EMBEDDINGS ##########
55
  class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')
56
 
57
- """
58
- abstract = """
59
- #Described herein are strength characteristics and biodegradation of articles produced using one or more “green” sustainable polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film, a bag, a bottle, a cap or lid therefore, a sheet, a box or other container, a plate, a cup, utensils, or the like.
60
- """
61
- abstract= classification.clean_data(abstract, type='String')
62
- abstract_embedding = classification.sentence_embedder(abstract, 'Model_bert')
63
- Number = 10
64
- broad_scope_predictions = classification.broad_scope_class_predictor(class_embeddings, abstract_embedding, Number, Sensitivity='High')
65
-
66
- print(broad_scope_class_predictor)
67
- """
68
 
69
  def classifier(userin):
70
  clean_in = classification.clean_data(userin, type='String')
 
30
  history[-1][1] = response
31
  return history
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ########## LOADING PRE-COMPUTED EMBEDDINGS ##########
35
  class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')
36
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  def classifier(userin):
39
  clean_in = classification.clean_data(userin, type='String')