Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from math import ceil | |
from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("GIanlucaRub/autoencoder_model_d_0") | |
def double_res(input_image): | |
input_height = input_image.shape[0] | |
input_width = input_image.shape[1] | |
height = ceil(input_height/128) | |
width = ceil(input_width/128) | |
expanded_input_image = np.zeros((128*height, 128*width,3), dtype=np.uint8) | |
np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image) | |
output_image = np.zeros((128*height*2, 128*width*2,3), dtype=np.float32) | |
for i in range(height): | |
for j in range(width): | |
temp_slice = expanded_input_image[i*128:(i+1)*128, j*128:(j+1)*128]/255 | |
upsampled_slice = model.predict(temp_slice[np.newaxis, ...]) | |
np.copyto(output_image[i*256:(i+1)*256, j*256:(j+1)*256], upsampled_slice[0]) | |
if i!= 0 and j!= 0 and i != height-1 and j!=width-1: | |
# removing inner borders | |
right_slice = expanded_input_image[i*128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255 | |
right_upsampled_slice = model.predict(right_slice[np.newaxis, ...]) | |
resized_right_slice = right_upsampled_slice[0][64:192,64:192] | |
np.copyto(output_image[i*256+64:(i+1)*256-64, (j+1)*256-64:(j+1)*256+64], resized_right_slice) | |
left_slice = expanded_input_image[i*128:(i+1)*128, j*128-64:(j)*128+64]/255 | |
left_upsampled_slice = model.predict(left_slice[np.newaxis, ...]) | |
resized_left_slice = left_upsampled_slice[0][64:192,64:192] | |
np.copyto(output_image[i*256+64:(i+1)*256-64, j*256-64:j*256+64], resized_left_slice) | |
upper_slice = expanded_input_image[(i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255 | |
upper_upsampled_slice = model.predict(upper_slice[np.newaxis, ...]) | |
resized_upper_slice = upper_upsampled_slice[0][64:192,64:192] | |
np.copyto(output_image[(i+1)*256-64:(i+1)*256+64, j*256+64:(j+1)*256-64], resized_upper_slice) | |
lower_slice = expanded_input_image[i*128-64:i*128+64, j*128:(j+1)*128]/255 | |
lower_upsampled_slice = model.predict(lower_slice[np.newaxis, ...]) | |
resized_lower_slice = lower_upsampled_slice[0][64:192,64:192] | |
np.copyto(output_image[i*256-64:i*256+64, j*256+64:(j+1)*256-64], resized_lower_slice) | |
# removing angles | |
lower_right_slice = expanded_input_image[i*128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255 | |
lower_right_upsampled_slice = model.predict(lower_right_slice[np.newaxis, ...]) | |
resized_lower_right_slice = lower_right_upsampled_slice[0][64:192,64:192] | |
np.copyto(output_image[i*256-64:i*256+64, (j+1)*256-64:(j+1)*256+64], resized_lower_right_slice) | |
lower_left_slice = expanded_input_image[i*128-64:i*128+64, j*128-64:j*128+64]/255 | |
lower_left_upsampled_slice = model.predict(lower_left_slice[np.newaxis, ...]) | |
resized_lower_left_slice = lower_left_upsampled_slice[0][64:192,64:192] | |
np.copyto(output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice) | |
resized_output_image = output_image[0:input_height*2,0:input_width*2] | |
return resized_output_image | |
demo = gr.Interface( | |
fn=double_res, | |
title="Double picture resolution", | |
description="Upload a picture and get the horizontal and vertical resolution doubled (4x pixels)", | |
allow_flagging="never", | |
inputs=[ | |
gr.inputs.Image(type="numpy") | |
], | |
outputs=gr.Image(type="numpy")) | |
demo.launch() | |