import gradio as gr
import time
import pandas as pd
import asyncio
from uuid import uuid4
from gradio_client import Client, handle_file
from utils.retriever import retrieve_paragraphs
from utils.generator import generate
from utils.logger import ChatLogger
from huggingface_hub import CommitScheduler
import json
import ast
import os
from pathlib import Path
# Set up dataset directory and HuggingFace integration
# JSON_DATASET_DIR = Path("json_dataset")
# JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
# JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.jsonl"
# Set up dataset directory and HuggingFace integration
JSON_DATASET_DIR = Path("json_dataset")
# Check if directory exists and create if needed
if not JSON_DATASET_DIR.exists():
try:
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
print(f"Created dataset directory at {JSON_DATASET_DIR}")
except Exception as e:
print(f"Error creating dataset directory: {str(e)}")
raise
else:
print(f"Using existing dataset directory at {JSON_DATASET_DIR}")
# Get HuggingFace token from environment
SPACES_LOG = os.environ.get("GINA_SPACES_LOG")
if not SPACES_LOG:
print("Warning: GINA_SPACES_LOG not found in environment, using local storage only")
# Initialize scheduler with proper dataset configuration
scheduler = CommitScheduler(
repo_id="GIZ/spaces_logs",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="gina_chatbot",
token=SPACES_LOG if SPACES_LOG else None,
every=60 # Sync every 60 seconds
)
# Initialize logger with configured scheduler
chat_logger = ChatLogger(scheduler = scheduler )
# Sample questions for examples
SAMPLE_QUESTIONS = {
"Fundamentos y tendencias internacionales de EC": [
"¿Cómo se diferencia el modelo de economía circular del modelo lineal tradicional de 'tomar, hacer, desechar'?",
"¿Cuáles son algunos de los principios clave de la economía circular y cómo se aplican en la práctica?",
"¿Podrías dar ejemplos de industrias o empresas que estén implementando con éxito prácticas de economía circular?"
],
"EC en Colombia": [
"¿Qué políticas y normativas vigentes en Colombia impulsan la adopción de la economía circular?",
"¿Cómo pueden las regulaciones colombianas incentivar la innovación en el ecodiseño y la gestión de residuos?",
"¿Qué papel tienen los instrumentos económicos y fiscales en la promoción de la circularidad en el sector productivo de Colombia?"]
}
# Global variable to cache API results and prevent double calls
geojson_analysis_cache = {}
# Initialize Chat
def start_chat(query, history):
"""Start a new chat interaction"""
history = history + [(query, None)]
return gr.update(interactive=False), gr.update(selected=1), history
def finish_chat():
"""Finish chat and reset input"""
return gr.update(interactive=True, value="")
def make_html_source(source,i):
"""
takes the text and converts it into html format for display in "source" side tab
"""
meta = source['answer_metadata']
content = source['answer'].strip()
name = meta['filename']
card = f"""
Doc {i} - {meta['filename']} - Page {int(meta['page'])}
{content}
"""
return card
async def chat_response(query, history, category, request=None):
"""Generate chat response based on method and inputs"""
try:
retrieved_paragraphs = retrieve_paragraphs(query, category)
context_retrieved = ast.literal_eval(retrieved_paragraphs)
# Build list of only content, no metadata
context_retrieved_formatted = "||".join(doc['answer'] for doc in context_retrieved)
context_retrieved_lst = [doc['answer'] for doc in context_retrieved]
# Prepare HTML for displaying source documents
docs_html = []
for i, d in enumerate(context_retrieved, 1):
docs_html.append(make_html_source(d, i))
docs_html = "".join(docs_html)
# Generate response
response = await generate(query=query, context=context_retrieved_lst)
# Log the interaction
try:
chat_logger.log(
query=query,
answer=response,
retrieved_content=context_retrieved_lst,
request=request
)
except Exception as e:
print(f"Logging error: {str(e)}")
# Stream response character by character
displayed_response = ""
for i, char in enumerate(response):
displayed_response += char
history[-1] = (query, displayed_response)
yield history, docs_html
# Only add delay every few characters to avoid being too slow
if i % 3 == 0:
await asyncio.sleep(0.02)
except Exception as e:
error_message = f"Error processing request: {str(e)}"
history[-1] = (query, error_message)
yield history, ""
# # Stream response word by word into the chat
# words = response.split()
# for i in range(len(words)):
# history[-1] = (query, " ".join(words[:i+1]))
# yield history, "**Sources:** Sample source documents would appear here..."
# await asyncio.sleep(0.05)
# def auto_analyze_file(file, history):
# """Automatically analyze uploaded GeoJSON file and add results to chat"""
# if file is not None:
# try:
# # Call API immediately and cache results
# file_key = f"{file.name}_{file.size if hasattr(file, 'size') else 'unknown'}"
# if file_key not in geojson_analysis_cache:
# formatted_stats = "This is to be removed"
# geojson_analysis_cache[file_key] = formatted_stats
# # Add analysis results directly to chat (no intermediate message)
# analysis_query = "📄 Análisis del GeoJSON cargado"
# cached_result = geojson_analysis_cache[file_key]
# # Add both query and response to history
# history = history + [(analysis_query, cached_result)]
# return history, "**Sources:** WhispAPI Analysis Results"
# except Exception as e:
# error_msg = f"❌ Error processing GeoJSON file: {str(e)}"
# history = history + [("📄 Error en análisis GeoJSON", error_msg)]
# return history, ""
# return history, ""
def toggle_search_method(method):
"""Toggle between GeoJSON upload and country selection"""
# if method == "Subir GeoJson":
# return (
# gr.update(visible=True), # geojson_section
# gr.update(visible=False), # reports_section
# gr.update(value=None), # dropdown_country
# )
# else: # "Talk to Reports"
return (
#gr.update(visible=False), # geojson_section
gr.update(visible=True), # reports_section
gr.update(), # dropdown_country
)
def change_sample_questions(key):
"""Update visible examples based on selected category"""
keys = list(SAMPLE_QUESTIONS.keys())
index = keys.index(key)
visible_bools = [False] * len(keys)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(keys))]
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="green",
secondary_hue="blue",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
text_size=gr.themes.utils.sizes.text_sm,
)
init_prompt = """
Hola, soy Gina, una asistente conversacional con IA diseñada para ayudarte a comprender conceptos y ayudarte con el tema de la Economía Circular. Responderé a tus preguntas usando la base de datos de documentos sobre economía circular.
💡 **Cómo usarla (pestañas a la derecha)**
**Enfoque:** Selecciona la sección de informes/documentos.
**Ejemplos:** Selecciona entre ejemplos de preguntas de diferentes categorías.
**Fuentes:** Consulta las fuentes de contenido utilizadas para generar las respuestas para la verificación de datos.
⚠️ Para conocer las limitaciones e información sobre la recopilación de datos, consulta la pestaña "Aviso legal"
"""
with gr.Blocks(title="Gina Bot", theme=theme, css="style.css") as demo:
# Main Chat Interface
with gr.Tab("Gina Bot"):
with gr.Row():
# Left column - Chat interface (2/3 width)
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[(None, init_prompt)],
show_copy_button=True,
show_label=False,
layout="panel",
avatar_images=(None, "chatbot_icon_2.png"),
height="auto"
)
# Feedback UI
with gr.Column():
with gr.Row(visible=False) as feedback_row:
gr.Markdown("¿Te ha sido útil esta respuesta?")
with gr.Row():
okay_btn = gr.Button("👍 De acuerdo", size="sm")
not_okay_btn = gr.Button("👎 No según lo esperado", size="sm")
feedback_thanks = gr.Markdown("Gracias por los comentarios.", visible=False)
# Input textbox
with gr.Row():
textbox = gr.Textbox(
placeholder="Pregúntame cualquier cosa sobre Economía Circular",
show_label=False,
scale=7,
lines=1,
interactive=True
)
# Right column - Controls and tabs (1/3 width)
with gr.Column(scale=1, variant="panel"):
with gr.Tabs() as tabs:
# Data Sources Tab
with gr.Tab("Fuentes de datos", id=2):
with gr.Group(visible=True) as reports_section:
dropdown_category = gr.Dropdown(
["Fundamentos y tendencias internacionales de EC", "Financiamiento en EC", "EC en Colombia"],
# label="Selecciona país",
label="Especifica tu área de interés",
multiselect =True,
value=["Fundamentos y tendencias internacionales de EC", "Financiamiento en EC", "EC en Colombia"],
interactive=True,
)
# # GeoJSON Upload Section
# with gr.Group(visible=True) as geojson_section:
# uploaded_file = gr.File(
# label="Subir GeoJson",
# file_types=[".geojson", ".json"],
# file_count="single"
# )
# upload_status = gr.Markdown("", visible=False)
# # Results table for WHISP API response
# results_table = gr.DataFrame(
# label="Resultados del análisis",
# visible=False,
# interactive=False,
# wrap=True,
# elem_classes="dataframe"
# )
# Talk to Reports Section
# Examples Tab
with gr.Tab("Ejemplos", id=0):
examples_hidden = gr.Textbox(visible=False)
first_key = list(SAMPLE_QUESTIONS.keys())[0]
dropdown_samples = gr.Dropdown(
SAMPLE_QUESTIONS.keys(),
value=first_key,
interactive=True,
show_label=True,
label="Seleccione una categoría de preguntas de muestra."
)
# Create example sections
sample_groups = []
for i, (key, questions) in enumerate(SAMPLE_QUESTIONS.items()):
examples_visible = True if i == 0 else False
with gr.Row(visible=examples_visible) as group_examples:
gr.Examples(
questions,
[examples_hidden],
examples_per_page=8,
run_on_click=False,
)
sample_groups.append(group_examples)
# Sources Tab
with gr.Tab("Fuentes", id=1, elem_id="sources-textbox"):
sources_textbox = gr.HTML(
show_label=False,
value="Los documentos originales aparecerán aquí después de que hagas una pregunta..."
)
# Guidelines Tab
with gr.Tab("Orientacion"):
gr.Markdown("""
#### Welcome to Gina Q&A!
This AI-powered assistant helps you understand Circular Economy.
## 💬 How to Ask Effective Questions
| ❌ Less Effective | ✅ More Effective |
|------------------|-------------------|
| "What is economy?" | "What are impact of circular economy on businesses?" |
| "Tell me about compliance" | "What are country guidelines on circular economy" |
| "Show me data" | "What is the trend on waste and how circular economy is helping in resolving this?" |
## 🔍 Using Data Sources
**Talk to Reports:** Select reports sections "Trend and fundamentals", "Financing Mechanisms", "Country Resource"
## ⭐ Best Practices
- Be specific about regions, commodities, or time periods
- Ask one question at a time for clearer answers
- Use follow-up questions to explore topics deeper
- Provide context when possible
""")
# About Tab
with gr.Tab("sobre Gina"):
gr.Markdown("""
## About Gina Q&A
The **Circular Economy** places some obligations on the manufacturers and business.
This AI-powered tool helps stakeholders:
- Understand circular Economy concepts and regulations
- Assess supply chain issues
- Navigate complex regulatory landscapes
**Developed by GIZ** for project in Colombia to enhance accessibility and understanding of circular Economy requirements
through advanced AI and geographic data processing capabilities.
### Key Features:
- Country-specific compliance guidance
- Real-time question answering with source citations
- User-friendly interface for complex regulatory information
""")
# Disclaimer Tab
with gr.Tab("Disclaimer"):
gr.Markdown("""
## Important Disclaimers
⚠️ **Scope & Limitations:**
- This tool is designed for Circular Economy assistance and geographic data analysis
- Responses should not be considered official legal or compliance advice
- Always consult qualified professionals for official compliance decisions
⚠️ **Data & Privacy:**
- We collect usage statistics to improve the tool
- Files are processed temporarily and not permanently stored
⚠️ **AI Limitations:**
- Responses are AI-generated and may contain inaccuracies
- The tool is a prototype under continuous development
- Always verify important information with authoritative sources
**Data Collection:** We collect questions, answers, feedback, and anonymized usage statistics
to improve tool performance based on legitimate interest in service enhancement.
By using this tool, you acknowledge these limitations and agree to use responses responsibly.
""")
# Event Handlers
# Toggle search method
# search_method.change(
# fn=toggle_search_method,
# inputs=[search_method],
# outputs=[reports_section, dropdown_category]
# )
# File upload - automatically analyze and display in chat (SIMPLIFIED)
# uploaded_file.change(
# fn=auto_analyze_file,
# inputs=[uploaded_file, chatbot],
# outputs=[chatbot, sources_textbox],
# queue=False
# )
# Chat functionality
textbox.submit(
start_chat,
[textbox, chatbot],
[textbox, tabs, chatbot],
queue=False
).then(
chat_response,
[textbox, chatbot, dropdown_category],
[chatbot, sources_textbox]
).then(
lambda: gr.update(visible=True),
outputs=[feedback_row]
).then(
finish_chat,
outputs=[textbox]
)
# Examples functionality
examples_hidden.change(
start_chat,
[examples_hidden, chatbot],
[textbox, tabs, chatbot],
queue=False
).then(
chat_response,
[examples_hidden, chatbot, dropdown_category],
[chatbot, sources_textbox]
).then(
lambda: gr.update(visible=True),
outputs=[feedback_row]
).then(
finish_chat,
outputs=[textbox]
)
# Sample questions dropdown
dropdown_samples.change(
change_sample_questions,
[dropdown_samples],
sample_groups
)
# Feedback buttons
# Feedback handlers with logging
def handle_feedback(feedback):
try:
# Get the last interaction from history
if chatbot.value:
last_query = chatbot.value[-1][0]
last_response = chatbot.value[-1][1]
# Log the feedback
chat_logger.log(
query=last_query,
answer=last_response,
retrieved_content=[], # Empty since this is feedback
feedback=feedback
)
except Exception as e:
print(f"Feedback logging error: {str(e)}")
return gr.update(visible=False), gr.update(visible=True)
okay_btn.click(
lambda: handle_feedback("positive"),
outputs=[feedback_row, feedback_thanks]
)
not_okay_btn.click(
lambda: handle_feedback("negative"),
outputs=[feedback_row, feedback_thanks]
)
# Launch the app
if __name__ == "__main__":
demo.launch()