Spaces:
Running
on
T4
Running
on
T4
app update post reader and utils
Browse filesonce reader, retriever and utils methods are moved to respective scripts app is slimmed down
app.py
CHANGED
|
@@ -3,50 +3,37 @@ import pandas as pd
|
|
| 3 |
import logging
|
| 4 |
import asyncio
|
| 5 |
import os
|
| 6 |
-
import re
|
| 7 |
-
import json
|
| 8 |
from uuid import uuid4
|
| 9 |
from datetime import datetime
|
| 10 |
from pathlib import Path
|
| 11 |
from huggingface_hub import CommitScheduler
|
| 12 |
from auditqa.sample_questions import QUESTIONS
|
| 13 |
from auditqa.reports import files, report_list
|
| 14 |
-
from langchain.schema import (
|
| 15 |
-
HumanMessage,
|
| 16 |
-
SystemMessage,
|
| 17 |
-
)
|
| 18 |
-
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 19 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
| 20 |
from auditqa.process_chunks import load_chunks, getconfig, get_local_qdrant
|
| 21 |
-
from
|
| 22 |
-
from
|
| 23 |
-
from
|
| 24 |
-
|
| 25 |
-
from qdrant_client.http import models as rest
|
| 26 |
from dotenv import load_dotenv
|
| 27 |
load_dotenv()
|
| 28 |
-
|
| 29 |
-
#
|
| 30 |
-
HF_token = os.environ["LLAMA_3_1"]
|
| 31 |
SPACES_LOG = os.environ["SPACES_LOG"]
|
|
|
|
|
|
|
| 32 |
# create the local logs repo
|
| 33 |
JSON_DATASET_DIR = Path("json_dataset")
|
| 34 |
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
| 35 |
JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
|
| 36 |
|
| 37 |
-
# the logs are written to dataset repo
|
| 38 |
# https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
|
| 39 |
scheduler = CommitScheduler(
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
model_config = getconfig("model_params.cfg")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
#### VECTOR STORE ####
|
| 52 |
# reports contain the already created chunks from Markdown version of pdf reports
|
|
@@ -54,68 +41,11 @@ model_config = getconfig("model_params.cfg")
|
|
| 54 |
# We need to create the local vectorstore collection once using load_chunks
|
| 55 |
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
| 56 |
# hence, comment out line below when creating for first time
|
| 57 |
-
#
|
| 58 |
# once the vectore embeddings are created we will use qdrant client to access these
|
| 59 |
vectorstores = get_local_qdrant()
|
| 60 |
|
| 61 |
|
| 62 |
-
|
| 63 |
-
#### FUNCTIONS ####
|
| 64 |
-
# App UI and and its functionality is inspired and adapted from
|
| 65 |
-
# https://huggingface.co/spaces/Ekimetrics/climate-question-answering
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def save_logs(logs) -> None:
|
| 69 |
-
""" Every interaction with app saves the log of question and answer,
|
| 70 |
-
this is to get the usage statistics of app and evaluate model performances
|
| 71 |
-
"""
|
| 72 |
-
with scheduler.lock:
|
| 73 |
-
with JSON_DATASET_PATH.open("a") as f:
|
| 74 |
-
json.dump(logs, f)
|
| 75 |
-
f.write("\n")
|
| 76 |
-
logging.info("logging done")
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def make_html_source(source,i):
|
| 80 |
-
"""
|
| 81 |
-
takes the text and converts it into html format for display in "source" side tab
|
| 82 |
-
"""
|
| 83 |
-
meta = source.metadata
|
| 84 |
-
content = source.page_content.strip()
|
| 85 |
-
|
| 86 |
-
name = meta['filename']
|
| 87 |
-
card = f"""
|
| 88 |
-
<div class="card" id="doc{i}">
|
| 89 |
-
<div class="card-content">
|
| 90 |
-
<h2>Doc {i} - {meta['filename']} - Page {int(meta['page'])}</h2>
|
| 91 |
-
<p>{content}</p>
|
| 92 |
-
</div>
|
| 93 |
-
<div class="card-footer">
|
| 94 |
-
<span>{name}</span>
|
| 95 |
-
<a href="{meta['filename']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
|
| 96 |
-
<span role="img" aria-label="Open PDF">🔗</span>
|
| 97 |
-
</a>
|
| 98 |
-
</div>
|
| 99 |
-
</div>
|
| 100 |
-
"""
|
| 101 |
-
|
| 102 |
-
return card
|
| 103 |
-
|
| 104 |
-
def parse_output_llm_with_sources(output):
|
| 105 |
-
# Split the content into a list of text and "[Doc X]" references
|
| 106 |
-
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
|
| 107 |
-
parts = []
|
| 108 |
-
for part in content_parts:
|
| 109 |
-
if part.startswith("Doc"):
|
| 110 |
-
subparts = part.split(",")
|
| 111 |
-
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
|
| 112 |
-
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
|
| 113 |
-
parts.append("".join(subparts))
|
| 114 |
-
else:
|
| 115 |
-
parts.append(part)
|
| 116 |
-
content_parts = "".join(parts)
|
| 117 |
-
return content_parts
|
| 118 |
-
|
| 119 |
def start_chat(query,history):
|
| 120 |
history = history + [(query,None)]
|
| 121 |
history = [tuple(x) for x in history]
|
|
@@ -141,64 +71,18 @@ async def chat(query,history,sources,reports,subtype,year):
|
|
| 141 |
|
| 142 |
##------------------------fetch collection from vectorstore------------------------------
|
| 143 |
vectorstore = vectorstores["allreports"]
|
| 144 |
-
##---------------------construct filter for metdata filtering---------------------------
|
| 145 |
-
if len(reports) == 0:
|
| 146 |
-
("defining filter for:{}:{}:{}".format(sources,subtype,year))
|
| 147 |
-
filter=rest.Filter(
|
| 148 |
-
must=[rest.FieldCondition(
|
| 149 |
-
key="metadata.source",
|
| 150 |
-
match=rest.MatchValue(value=sources)
|
| 151 |
-
),
|
| 152 |
-
rest.FieldCondition(
|
| 153 |
-
key="metadata.subtype",
|
| 154 |
-
match=rest.MatchValue(value=subtype)
|
| 155 |
-
),
|
| 156 |
-
rest.FieldCondition(
|
| 157 |
-
key="metadata.year",
|
| 158 |
-
match=rest.MatchAny(any=year)
|
| 159 |
-
),])
|
| 160 |
-
else:
|
| 161 |
-
print("defining filter for allreports:",reports)
|
| 162 |
-
filter=rest.Filter(
|
| 163 |
-
must=[
|
| 164 |
-
rest.FieldCondition(
|
| 165 |
-
key="metadata.filename",
|
| 166 |
-
match=rest.MatchAny(any=reports)
|
| 167 |
-
)])
|
| 168 |
-
|
| 169 |
|
| 170 |
##------------------------------get context----------------------------------------------
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
for
|
| 175 |
-
# similarity score threshold can be used to make adjustments in quality and quantity for Retriever
|
| 176 |
-
# However need to make balancing, as retrieved results are again used by Ranker to fetch best among
|
| 177 |
-
# retreived results
|
| 178 |
-
retriever = vectorstore.as_retriever(
|
| 179 |
-
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.6,
|
| 180 |
-
"k": int(model_config.get('retriever','TOP_K')),
|
| 181 |
-
"filter":filter})
|
| 182 |
-
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
| 183 |
-
compressor = CrossEncoderReranker(model=model, top_n=3)
|
| 184 |
-
compression_retriever = ContextualCompressionRetriever(
|
| 185 |
-
base_compressor=compressor, base_retriever=retriever
|
| 186 |
-
)
|
| 187 |
-
context_retrieved = compression_retriever.invoke(question)
|
| 188 |
-
logging.info(len(context_retrieved))
|
| 189 |
-
for doc in context_retrieved:
|
| 190 |
-
logging.info(doc.metadata)
|
| 191 |
|
| 192 |
-
def format_docs(docs):
|
| 193 |
-
return "\n\n".join(doc.page_content for doc in docs)
|
| 194 |
-
|
| 195 |
-
context_retrieved_formatted = format_docs(context_retrieved)
|
| 196 |
-
context_retrieved_lst.append(context_retrieved_formatted)
|
| 197 |
-
|
| 198 |
##------------------- -------------Prompt--------------------------------------------------
|
| 199 |
SYSTEM_PROMPT = """
|
| 200 |
You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports. Provide a clear and structured answer based on the passages/context provided and the guidelines.
|
| 201 |
Guidelines:
|
|
|
|
| 202 |
- If the passages have useful facts or numbers, use them in your answer.
|
| 203 |
- When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
|
| 204 |
- Do not use the sentence 'Doc i says ...' to say where information came from.
|
|
@@ -215,87 +99,59 @@ async def chat(query,history,sources,reports,subtype,year):
|
|
| 215 |
Question: {question} - Explained to audit expert
|
| 216 |
Answer in english with the passages citations:
|
| 217 |
""".format(context = context_retrieved_lst, question=query)
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
| 220 |
-
SystemMessage(content=SYSTEM_PROMPT),
|
| 221 |
-
HumanMessage(
|
| 222 |
-
content=USER_PROMPT
|
| 223 |
-
),]
|
| 224 |
-
|
| 225 |
-
##-----------------------getting inference endpoints------------------------------
|
| 226 |
-
|
| 227 |
-
# Set up the streaming callback handler
|
| 228 |
-
callback = StreamingStdOutCallbackHandler()
|
| 229 |
-
|
| 230 |
-
# Initialize the HuggingFaceEndpoint with streaming enabled
|
| 231 |
-
llm_qa = HuggingFaceEndpoint(
|
| 232 |
-
endpoint_url=model_config.get('reader', 'ENDPOINT'),
|
| 233 |
-
max_new_tokens=512,
|
| 234 |
-
repetition_penalty=1.03,
|
| 235 |
-
timeout=70,
|
| 236 |
-
huggingfacehub_api_token=HF_token,
|
| 237 |
-
streaming=True, # Enable streaming for real-time token generation
|
| 238 |
-
callbacks=[callback] # Add the streaming callback handler
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
# Create a ChatHuggingFace instance with the streaming-enabled endpoint
|
| 242 |
-
chat_model = ChatHuggingFace(llm=llm_qa)
|
| 243 |
-
|
| 244 |
-
# Prepare the HTML for displaying source documents
|
| 245 |
docs_html = []
|
| 246 |
for i, d in enumerate(context_retrieved, 1):
|
| 247 |
docs_html.append(make_html_source(d, i))
|
| 248 |
docs_html = "".join(docs_html)
|
| 249 |
|
| 250 |
-
|
| 251 |
answer_yet = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
|
|
|
| 255 |
# Without nonlocal, Python would create a new local variable answer_yet inside process_stream(), instead of modifying the one from the outer scope.
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
# #callbacks = [StreamingStdOutCallbackHandler()]
|
| 270 |
-
# llm_qa = HuggingFaceEndpoint(
|
| 271 |
-
# endpoint_url= model_config.get('reader','ENDPOINT'),
|
| 272 |
-
# max_new_tokens=512,
|
| 273 |
-
# repetition_penalty=1.03,
|
| 274 |
-
# timeout=70,
|
| 275 |
-
# huggingfacehub_api_token=HF_token,)
|
| 276 |
-
|
| 277 |
-
# # create RAG
|
| 278 |
-
# chat_model = ChatHuggingFace(llm=llm_qa)
|
| 279 |
-
|
| 280 |
-
# ##-------------------------- get answers ---------------------------------------
|
| 281 |
-
# answer_lst = []
|
| 282 |
-
# for question, context in zip(question_lst , context_retrieved_lst):
|
| 283 |
-
# answer = chat_model.invoke(messages)
|
| 284 |
-
# answer_lst.append(answer.content)
|
| 285 |
-
# docs_html = []
|
| 286 |
-
# for i, d in enumerate(context_retrieved, 1):
|
| 287 |
-
# docs_html.append(make_html_source(d, i))
|
| 288 |
-
# docs_html = "".join(docs_html)
|
| 289 |
-
|
| 290 |
-
# previous_answer = history[-1][1]
|
| 291 |
-
# previous_answer = previous_answer if previous_answer is not None else ""
|
| 292 |
-
# answer_yet = previous_answer + answer_lst[0]
|
| 293 |
-
# answer_yet = parse_output_llm_with_sources(answer_yet)
|
| 294 |
-
# history[-1] = (query,answer_yet)
|
| 295 |
-
|
| 296 |
-
# history = [tuple(x) for x in history]
|
| 297 |
-
|
| 298 |
-
# yield history,docs_html
|
| 299 |
|
| 300 |
# logging the event
|
| 301 |
try:
|
|
@@ -309,7 +165,8 @@ async def chat(query,history,sources,reports,subtype,year):
|
|
| 309 |
"question":query,
|
| 310 |
"sources":sources,
|
| 311 |
"retriever":model_config.get('retriever','MODEL'),
|
| 312 |
-
"
|
|
|
|
| 313 |
"docs":[doc.page_content for doc in context_retrieved],
|
| 314 |
"answer": history[-1][1],
|
| 315 |
"time": timestamp,
|
|
|
|
| 3 |
import logging
|
| 4 |
import asyncio
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
from uuid import uuid4
|
| 7 |
from datetime import datetime
|
| 8 |
from pathlib import Path
|
| 9 |
from huggingface_hub import CommitScheduler
|
| 10 |
from auditqa.sample_questions import QUESTIONS
|
| 11 |
from auditqa.reports import files, report_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from auditqa.process_chunks import load_chunks, getconfig, get_local_qdrant
|
| 13 |
+
from auditqa.retriever import get_context
|
| 14 |
+
from auditqa.reader import nvidia_client, dedicated_endpoint
|
| 15 |
+
from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template
|
| 16 |
+
|
|
|
|
| 17 |
from dotenv import load_dotenv
|
| 18 |
load_dotenv()
|
| 19 |
+
|
| 20 |
+
# fetch tokens and model config params
|
|
|
|
| 21 |
SPACES_LOG = os.environ["SPACES_LOG"]
|
| 22 |
+
model_config = getconfig("model_params.cfg")
|
| 23 |
+
|
| 24 |
# create the local logs repo
|
| 25 |
JSON_DATASET_DIR = Path("json_dataset")
|
| 26 |
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
| 27 |
JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
|
| 28 |
|
| 29 |
+
# the logs are written to dataset repo periodically from local logs
|
| 30 |
# https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
|
| 31 |
scheduler = CommitScheduler(
|
| 32 |
+
repo_id="GIZ/spaces_logs",
|
| 33 |
+
repo_type="dataset",
|
| 34 |
+
folder_path=JSON_DATASET_DIR,
|
| 35 |
+
path_in_repo="audit_chatbot",
|
| 36 |
+
token=SPACES_LOG )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
#### VECTOR STORE ####
|
| 39 |
# reports contain the already created chunks from Markdown version of pdf reports
|
|
|
|
| 41 |
# We need to create the local vectorstore collection once using load_chunks
|
| 42 |
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
| 43 |
# hence, comment out line below when creating for first time
|
| 44 |
+
#vectorstores = load_chunks()
|
| 45 |
# once the vectore embeddings are created we will use qdrant client to access these
|
| 46 |
vectorstores = get_local_qdrant()
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def start_chat(query,history):
|
| 50 |
history = history + [(query,None)]
|
| 51 |
history = [tuple(x) for x in history]
|
|
|
|
| 71 |
|
| 72 |
##------------------------fetch collection from vectorstore------------------------------
|
| 73 |
vectorstore = vectorstores["allreports"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
##------------------------------get context----------------------------------------------
|
| 76 |
+
context_retrieved = get_context(vectorstore=vectorstore,query=query,reports=reports,
|
| 77 |
+
sources=sources,subtype=subtype,year=year)
|
| 78 |
+
context_retrieved_formatted = "||".join(doc.page_content for doc in context_retrieved)
|
| 79 |
+
context_retrieved_lst = [doc.page_content for doc in context_retrieved]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
##------------------- -------------Prompt--------------------------------------------------
|
| 82 |
SYSTEM_PROMPT = """
|
| 83 |
You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports. Provide a clear and structured answer based on the passages/context provided and the guidelines.
|
| 84 |
Guidelines:
|
| 85 |
+
- Passeges are provided as comma separated list of strings
|
| 86 |
- If the passages have useful facts or numbers, use them in your answer.
|
| 87 |
- When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
|
| 88 |
- Do not use the sentence 'Doc i says ...' to say where information came from.
|
|
|
|
| 99 |
Question: {question} - Explained to audit expert
|
| 100 |
Answer in english with the passages citations:
|
| 101 |
""".format(context = context_retrieved_lst, question=query)
|
| 102 |
+
|
| 103 |
+
##-------------------- apply message template ------------------------------
|
| 104 |
+
messages = get_message_template(model_config.get('reader','TYPE'),SYSTEM_PROMPT,USER_PROMPT)
|
| 105 |
|
| 106 |
+
## -----------------Prepare HTML for displaying source documents --------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
docs_html = []
|
| 108 |
for i, d in enumerate(context_retrieved, 1):
|
| 109 |
docs_html.append(make_html_source(d, i))
|
| 110 |
docs_html = "".join(docs_html)
|
| 111 |
|
| 112 |
+
##-----------------------get answer from endpoints------------------------------
|
| 113 |
answer_yet = ""
|
| 114 |
+
if model_config.get('reader','TYPE') == 'NVIDIA':
|
| 115 |
+
chat_model = nvidia_client()
|
| 116 |
+
async def process_stream():
|
| 117 |
+
nonlocal answer_yet
|
| 118 |
+
# Without nonlocal, Python would create a new local variable answer_yet inside process_stream(), instead of modifying the one from the outer scope.
|
| 119 |
+
#nonlocal answer_yet # Use the outer scope's answer_yet variable
|
| 120 |
+
# Iterate over the streaming response chunks
|
| 121 |
+
response = chat_model.chat_completion(
|
| 122 |
+
model=model_config.get("reader","NVIDIA_MODEL"),
|
| 123 |
+
messages=messages,
|
| 124 |
+
stream=True,
|
| 125 |
+
max_tokens=int(model_config.get('reader','MAX_TOKENS')),
|
| 126 |
+
)
|
| 127 |
+
for message in response:
|
| 128 |
+
token = message.choices[0].delta.content
|
| 129 |
+
if token:
|
| 130 |
+
answer_yet += token
|
| 131 |
+
parsed_answer = parse_output_llm_with_sources(answer_yet)
|
| 132 |
+
history[-1] = (query, parsed_answer)
|
| 133 |
+
yield [tuple(x) for x in history], docs_html
|
| 134 |
+
|
| 135 |
+
# Stream the response updates
|
| 136 |
+
async for update in process_stream():
|
| 137 |
+
yield update
|
| 138 |
|
| 139 |
+
else:
|
| 140 |
+
chat_model = dedicated_endpoint()
|
| 141 |
+
async def process_stream():
|
| 142 |
# Without nonlocal, Python would create a new local variable answer_yet inside process_stream(), instead of modifying the one from the outer scope.
|
| 143 |
+
nonlocal answer_yet # Use the outer scope's answer_yet variable
|
| 144 |
+
# Iterate over the streaming response chunks
|
| 145 |
+
async for chunk in chat_model.astream(messages):
|
| 146 |
+
token = chunk.content
|
| 147 |
+
answer_yet += token
|
| 148 |
+
parsed_answer = parse_output_llm_with_sources(answer_yet)
|
| 149 |
+
history[-1] = (query, parsed_answer)
|
| 150 |
+
yield [tuple(x) for x in history], docs_html
|
| 151 |
+
|
| 152 |
+
# Stream the response updates
|
| 153 |
+
async for update in process_stream():
|
| 154 |
+
yield update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
# logging the event
|
| 157 |
try:
|
|
|
|
| 165 |
"question":query,
|
| 166 |
"sources":sources,
|
| 167 |
"retriever":model_config.get('retriever','MODEL'),
|
| 168 |
+
"endpoint_type":model_config.get('reader','TYPE')
|
| 169 |
+
"raeder":model_config.get('reader','NVIDIA_MODEL'),
|
| 170 |
"docs":[doc.page_content for doc in context_retrieved],
|
| 171 |
"answer": history[-1][1],
|
| 172 |
"time": timestamp,
|