Spaces:
Running
on
T4
Running
on
T4
Upload app.py
Browse filesTried to add live streaming of an answers
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import logging
|
|
|
|
| 4 |
import os
|
| 5 |
import re
|
| 6 |
import json
|
|
@@ -14,6 +15,7 @@ from langchain.schema import (
|
|
| 14 |
HumanMessage,
|
| 15 |
SystemMessage,
|
| 16 |
)
|
|
|
|
| 17 |
from langchain_community.llms import HuggingFaceEndpoint
|
| 18 |
from auditqa.process_chunks import load_chunks, getconfig
|
| 19 |
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
|
@@ -215,36 +217,69 @@ async def chat(query,history,sources,reports,subtype,year):
|
|
| 215 |
|
| 216 |
##-----------------------getting inference endpoints------------------------------
|
| 217 |
|
| 218 |
-
|
|
|
|
| 219 |
llm_qa = HuggingFaceEndpoint(
|
| 220 |
-
endpoint_url=
|
| 221 |
max_new_tokens=512,
|
| 222 |
repetition_penalty=1.03,
|
| 223 |
timeout=70,
|
| 224 |
-
huggingfacehub_api_token=HF_token,
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
# create RAG
|
| 227 |
chat_model = ChatHuggingFace(llm=llm_qa)
|
| 228 |
-
|
| 229 |
-
##-------------------------- get answers ---------------------------------------
|
| 230 |
-
answer_lst = []
|
| 231 |
-
for question, context in zip(question_lst , context_retrieved_lst):
|
| 232 |
-
answer = chat_model.invoke(messages)
|
| 233 |
-
answer_lst.append(answer.content)
|
| 234 |
docs_html = []
|
| 235 |
for i, d in enumerate(context_retrieved, 1):
|
| 236 |
docs_html.append(make_html_source(d, i))
|
| 237 |
docs_html = "".join(docs_html)
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
yield history,docs_html
|
| 248 |
|
| 249 |
# logging the event
|
| 250 |
try:
|
|
@@ -472,14 +507,14 @@ with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-
|
|
| 472 |
# using event listeners for 1. query box 2. click on example question
|
| 473 |
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
|
| 474 |
(textbox
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
|
| 479 |
(examples_hidden
|
| 480 |
-
.change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue
|
| 481 |
-
.then(chat, [examples_hidden,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit
|
| 482 |
-
.then(finish_chat, None, [textbox],api_name
|
| 483 |
)
|
| 484 |
|
| 485 |
demo.queue()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import logging
|
| 4 |
+
import asyncio
|
| 5 |
import os
|
| 6 |
import re
|
| 7 |
import json
|
|
|
|
| 15 |
HumanMessage,
|
| 16 |
SystemMessage,
|
| 17 |
)
|
| 18 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 19 |
from langchain_community.llms import HuggingFaceEndpoint
|
| 20 |
from auditqa.process_chunks import load_chunks, getconfig
|
| 21 |
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
|
|
|
| 217 |
|
| 218 |
##-----------------------getting inference endpoints------------------------------
|
| 219 |
|
| 220 |
+
callback = StreamingStdOutCallbackHandler()
|
| 221 |
+
|
| 222 |
llm_qa = HuggingFaceEndpoint(
|
| 223 |
+
endpoint_url=model_config.get('reader', 'ENDPOINT'),
|
| 224 |
max_new_tokens=512,
|
| 225 |
repetition_penalty=1.03,
|
| 226 |
timeout=70,
|
| 227 |
+
huggingfacehub_api_token=HF_token,
|
| 228 |
+
streaming=True,
|
| 229 |
+
callbacks=[callback]
|
| 230 |
+
)
|
| 231 |
|
|
|
|
| 232 |
chat_model = ChatHuggingFace(llm=llm_qa)
|
| 233 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
docs_html = []
|
| 235 |
for i, d in enumerate(context_retrieved, 1):
|
| 236 |
docs_html.append(make_html_source(d, i))
|
| 237 |
docs_html = "".join(docs_html)
|
| 238 |
|
| 239 |
+
answer_yet = ""
|
| 240 |
+
|
| 241 |
+
async def process_stream():
|
| 242 |
+
nonlocal answer_yet
|
| 243 |
+
async for chunk in chat_model.astream(messages):
|
| 244 |
+
token = chunk.content
|
| 245 |
+
answer_yet += token
|
| 246 |
+
parsed_answer = parse_output_llm_with_sources(answer_yet)
|
| 247 |
+
history[-1] = (query, parsed_answer)
|
| 248 |
+
yield [tuple(x) for x in history], docs_html
|
| 249 |
+
|
| 250 |
+
async for update in process_stream():
|
| 251 |
+
yield update
|
| 252 |
+
|
| 253 |
+
# #callbacks = [StreamingStdOutCallbackHandler()]
|
| 254 |
+
# llm_qa = HuggingFaceEndpoint(
|
| 255 |
+
# endpoint_url= model_config.get('reader','ENDPOINT'),
|
| 256 |
+
# max_new_tokens=512,
|
| 257 |
+
# repetition_penalty=1.03,
|
| 258 |
+
# timeout=70,
|
| 259 |
+
# huggingfacehub_api_token=HF_token,)
|
| 260 |
+
|
| 261 |
+
# # create RAG
|
| 262 |
+
# chat_model = ChatHuggingFace(llm=llm_qa)
|
| 263 |
|
| 264 |
+
# ##-------------------------- get answers ---------------------------------------
|
| 265 |
+
# answer_lst = []
|
| 266 |
+
# for question, context in zip(question_lst , context_retrieved_lst):
|
| 267 |
+
# answer = chat_model.invoke(messages)
|
| 268 |
+
# answer_lst.append(answer.content)
|
| 269 |
+
# docs_html = []
|
| 270 |
+
# for i, d in enumerate(context_retrieved, 1):
|
| 271 |
+
# docs_html.append(make_html_source(d, i))
|
| 272 |
+
# docs_html = "".join(docs_html)
|
| 273 |
+
|
| 274 |
+
# previous_answer = history[-1][1]
|
| 275 |
+
# previous_answer = previous_answer if previous_answer is not None else ""
|
| 276 |
+
# answer_yet = previous_answer + answer_lst[0]
|
| 277 |
+
# answer_yet = parse_output_llm_with_sources(answer_yet)
|
| 278 |
+
# history[-1] = (query,answer_yet)
|
| 279 |
+
|
| 280 |
+
# history = [tuple(x) for x in history]
|
| 281 |
|
| 282 |
+
# yield history,docs_html
|
| 283 |
|
| 284 |
# logging the event
|
| 285 |
try:
|
|
|
|
| 507 |
# using event listeners for 1. query box 2. click on example question
|
| 508 |
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
|
| 509 |
(textbox
|
| 510 |
+
.submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
|
| 511 |
+
.then(chat, [textbox, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], queue=True, concurrency_limit=8, api_name="chat_textbox")
|
| 512 |
+
.then(finish_chat, None, [textbox], api_name="finish_chat_textbox"))
|
| 513 |
|
| 514 |
(examples_hidden
|
| 515 |
+
.change(start_chat, [examples_hidden, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_examples")
|
| 516 |
+
.then(chat, [examples_hidden, chatbot, dropdown_sources, dropdown_reports, dropdown_category, dropdown_year], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_examples")
|
| 517 |
+
.then(finish_chat, None, [textbox], api_name="finish_chat_examples")
|
| 518 |
)
|
| 519 |
|
| 520 |
demo.queue()
|