from tkinter import Text from haystack.nodes import TransformersDocumentClassifier from typing import List, Tuple import configparser import streamlit as st from pandas import DataFrame, Series import logging from udfPreprocess.preprocessing import processingpipeline config = configparser.ConfigParser() config.read_file(open('udfPreprocess/paramconfig.cfg')) @st.cache(allow_output_mutation=True) def load_sdgClassifier(): """ loads the document classifier using haystack, where the name/path of model in HF-hub as string is used to fetch the model object. 1. https://docs.haystack.deepset.ai/reference/document-classifier-api 2. https://docs.haystack.deepset.ai/docs/document_classifier Return: document classifier model """ logging.info("Loading classifier") doc_classifier_model = config.get('sdg','MODEL') doc_classifier = TransformersDocumentClassifier( model_name_or_path=doc_classifier_model, task="text-classification") return doc_classifier def sdg_classification(paraList:List[Text])->Tuple[DataFrame,Series]: """ Text-Classification on the list of texts provided. Classifier provides the most appropriate label for each text. these labels are in terms of if text belongs to which particular Sustainable Devleopment Goal (SDG). Params --------- paraList: List of paragrpahs/text. The output of Preprocessing Pipeline contains this list of paragraphs in different format, the simple List format is being used here. Returns ---------- df: Dataframe with two columns['SDG:int', 'text'] x: Series object with the unique SDG covered in the document uploaded and the number of times it is covered/discussed/count_of_paragraphs. """ logging.info("running SDG classifiication") threshold = float(config.get('sdg','THRESHOLD')) classifier = load_sdgClassifier() labels = classifier(paraList) labels_= [(l['label'],l['score']) for l in labels] df = DataFrame(labels_, columns=["SDG", "Relevancy"]) df['text'] = paraList df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True) df.index += 1 df =df[df['Relevancy']>threshold] x = df['SDG'].value_counts() # df = df.copy() df= df.drop(['Relevancy'], axis = 1) return df, x def runSDGPreprocessingPipeline()->List[Text]: """ creates the pipeline and runs the preprocessing pipeline, the params for pipeline are fetched from paramconfig """ file_path = st.session_state['filepath'] file_name = st.session_state['filename'] sdg_processing_pipeline = processingpipeline() split_by = config.get('sdg','SPLIT_BY') split_length = int(config.get('sdg','SPLIT_LENGTH')) output_sdg_pre = sdg_processing_pipeline.run(file_paths = file_path, params= {"FileConverter": {"file_path": file_path, \ "file_name": file_name}, "UdfPreProcessor": {"removePunc": False, \ "split_by": split_by, \ "split_length":split_length}}) return output_sdg_pre['paraList']