prashant
commited on
Commit
·
fc140bc
1
Parent(s):
44648c8
final fix in SDG
Browse files- appStore/sdg_analysis.py +28 -26
- utils/checkconfig.py +12 -0
- utils/keyword_extraction.py +31 -18
- utils/preprocessing.py +2 -0
- utils/sdg_classifier.py +44 -51
appStore/sdg_analysis.py
CHANGED
@@ -11,12 +11,24 @@ import streamlit as st
|
|
11 |
from st_aggrid import AgGrid
|
12 |
from st_aggrid.shared import ColumnsAutoSizeMode
|
13 |
from utils.sdg_classifier import sdg_classification
|
14 |
-
from utils.sdg_classifier import runSDGPreprocessingPipeline
|
15 |
-
from utils.keyword_extraction import
|
16 |
import logging
|
17 |
logger = logging.getLogger(__name__)
|
|
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def app():
|
22 |
|
@@ -71,35 +83,22 @@ def app():
|
|
71 |
""")
|
72 |
st.markdown("")
|
73 |
|
74 |
-
### Label Dictionary ###
|
75 |
-
_lab_dict = {0: 'no_cat',
|
76 |
-
1:'SDG 1 - No poverty',
|
77 |
-
2:'SDG 2 - Zero hunger',
|
78 |
-
3:'SDG 3 - Good health and well-being',
|
79 |
-
4:'SDG 4 - Quality education',
|
80 |
-
5:'SDG 5 - Gender equality',
|
81 |
-
6:'SDG 6 - Clean water and sanitation',
|
82 |
-
7:'SDG 7 - Affordable and clean energy',
|
83 |
-
8:'SDG 8 - Decent work and economic growth',
|
84 |
-
9:'SDG 9 - Industry, Innovation and Infrastructure',
|
85 |
-
10:'SDG 10 - Reduced inequality',
|
86 |
-
11:'SDG 11 - Sustainable cities and communities',
|
87 |
-
12:'SDG 12 - Responsible consumption and production',
|
88 |
-
13:'SDG 13 - Climate action',
|
89 |
-
14:'SDG 14 - Life below water',
|
90 |
-
15:'SDG 15 - Life on land',
|
91 |
-
16:'SDG 16 - Peace, justice and strong institutions',
|
92 |
-
17:'SDG 17 - Partnership for the goals',}
|
93 |
|
94 |
### Main app code ###
|
95 |
with st.container():
|
96 |
if st.button("RUN SDG Analysis"):
|
97 |
-
|
98 |
-
|
99 |
if 'filepath' in st.session_state:
|
100 |
file_name = st.session_state['filename']
|
101 |
file_path = st.session_state['filepath']
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
if len(allDocuments['documents']) > 100:
|
104 |
warning_msg = ": This might take sometime, please sit back and relax."
|
105 |
else:
|
@@ -107,12 +106,15 @@ def app():
|
|
107 |
|
108 |
with st.spinner("Running SDG Classification{}".format(warning_msg)):
|
109 |
|
110 |
-
df, x = sdg_classification(allDocuments['documents']
|
|
|
|
|
|
|
111 |
sdg_labels = x.SDG.unique()[::-1]
|
112 |
textrankkeywordlist = []
|
113 |
for label in sdg_labels:
|
114 |
sdgdata = " ".join(df[df.SDG == label].text.to_list())
|
115 |
-
textranklist_ = textrank(sdgdata)
|
116 |
if len(textranklist_) > 0:
|
117 |
textrankkeywordlist.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)})
|
118 |
tRkeywordsDf = pd.DataFrame(textrankkeywordlist)
|
|
|
11 |
from st_aggrid import AgGrid
|
12 |
from st_aggrid.shared import ColumnsAutoSizeMode
|
13 |
from utils.sdg_classifier import sdg_classification
|
14 |
+
from utils.sdg_classifier import runSDGPreprocessingPipeline, load_sdgClassifier
|
15 |
+
from utils.keyword_extraction import textrank
|
16 |
import logging
|
17 |
logger = logging.getLogger(__name__)
|
18 |
+
from utils.checkconfig import getconfig
|
19 |
|
20 |
|
21 |
+
# Declare all the necessary variables
|
22 |
+
config = getconfig('paramconfig.cfg')
|
23 |
+
model_name = config.get('sdg','MODEL')
|
24 |
+
split_by = config.get('sdg','SPLIT_BY')
|
25 |
+
split_length = int(config.get('sdg','SPLIT_LENGTH'))
|
26 |
+
split_overlap = int(config.get('sdg','SPLIT_OVERLAP'))
|
27 |
+
remove_punc = bool(int(config.get('sdg','REMOVE_PUNC')))
|
28 |
+
split_respect_sentence_boundary = bool(int(config.get('sdg','RESPECT_SENTENCE_BOUNDARY')))
|
29 |
+
threshold = float(config.get('sdg','THRESHOLD'))
|
30 |
+
top_n = int(config.get('sdg','TOP_KEY'))
|
31 |
+
|
32 |
|
33 |
def app():
|
34 |
|
|
|
83 |
""")
|
84 |
st.markdown("")
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
### Main app code ###
|
88 |
with st.container():
|
89 |
if st.button("RUN SDG Analysis"):
|
90 |
+
|
|
|
91 |
if 'filepath' in st.session_state:
|
92 |
file_name = st.session_state['filename']
|
93 |
file_path = st.session_state['filepath']
|
94 |
+
classifier = load_sdgClassifier(model_name)
|
95 |
+
allDocuments = runSDGPreprocessingPipeline(fileName= file_name,
|
96 |
+
filePath= file_path, split_by= split_by,
|
97 |
+
split_length= split_length,
|
98 |
+
split_overlap= split_overlap,
|
99 |
+
split_respect_sentence_boundary= split_respect_sentence_boundary,
|
100 |
+
removePunc= remove_punc)
|
101 |
+
|
102 |
if len(allDocuments['documents']) > 100:
|
103 |
warning_msg = ": This might take sometime, please sit back and relax."
|
104 |
else:
|
|
|
106 |
|
107 |
with st.spinner("Running SDG Classification{}".format(warning_msg)):
|
108 |
|
109 |
+
df, x = sdg_classification(haystackdoc=allDocuments['documents'],
|
110 |
+
threshold= threshold,
|
111 |
+
classifiermodel= classifier)
|
112 |
+
df = df.drop(['Relevancy'], axis = 1)
|
113 |
sdg_labels = x.SDG.unique()[::-1]
|
114 |
textrankkeywordlist = []
|
115 |
for label in sdg_labels:
|
116 |
sdgdata = " ".join(df[df.SDG == label].text.to_list())
|
117 |
+
textranklist_ = textrank(textdata=sdgdata, words= top_n)
|
118 |
if len(textranklist_) > 0:
|
119 |
textrankkeywordlist.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)})
|
120 |
tRkeywordsDf = pd.DataFrame(textrankkeywordlist)
|
utils/checkconfig.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import configparser
|
2 |
+
import logging
|
3 |
+
|
4 |
+
def getconfig(configFilePath):
|
5 |
+
|
6 |
+
config = configparser.ConfigParser()
|
7 |
+
|
8 |
+
try:
|
9 |
+
config.read_file(open(configFilePath))
|
10 |
+
return config
|
11 |
+
except:
|
12 |
+
logging.warning("config file not found")
|
utils/keyword_extraction.py
CHANGED
@@ -5,25 +5,13 @@ import pandas as pd
|
|
5 |
# from nltk.corpus import stopwords
|
6 |
import pickle
|
7 |
from typing import List, Text
|
8 |
-
import configparser
|
9 |
import logging
|
10 |
from summa import keywords
|
11 |
|
12 |
-
try:
|
13 |
-
from termcolor import colored
|
14 |
-
except:
|
15 |
-
pass
|
16 |
-
|
17 |
try:
|
18 |
import streamlit as st
|
19 |
except ImportError:
|
20 |
logging.info("Streamlit not installed")
|
21 |
-
config = configparser.ConfigParser()
|
22 |
-
try:
|
23 |
-
config.read_file(open('paramconfig.cfg'))
|
24 |
-
except Exception:
|
25 |
-
logging.warning("paramconfig file not found")
|
26 |
-
st.info("Please place the paramconfig file in the same directory as app.py")
|
27 |
|
28 |
|
29 |
def sort_coo(coo_matrix):
|
@@ -69,6 +57,30 @@ def extract_topn_from_vector(feature_names, sorted_items, top_n=10):
|
|
69 |
|
70 |
return results
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
def keywordExtraction(sdg:int,sdgdata:List[Text]):
|
73 |
"""
|
74 |
TFIDF based keywords extraction
|
@@ -115,12 +127,13 @@ def textrank(textdata:Text, ratio:float = 0.1, words = 0):
|
|
115 |
results: extracted keywords
|
116 |
"""
|
117 |
if words == 0:
|
118 |
-
try:
|
119 |
-
|
120 |
-
|
121 |
-
except Exception as e:
|
122 |
-
|
123 |
-
|
|
|
124 |
else:
|
125 |
try:
|
126 |
results = keywords.keywords(textdata, words= words).split("\n")
|
|
|
5 |
# from nltk.corpus import stopwords
|
6 |
import pickle
|
7 |
from typing import List, Text
|
|
|
8 |
import logging
|
9 |
from summa import keywords
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
import streamlit as st
|
13 |
except ImportError:
|
14 |
logging.info("Streamlit not installed")
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def sort_coo(coo_matrix):
|
|
|
57 |
|
58 |
return results
|
59 |
|
60 |
+
|
61 |
+
def tfidfKeyword(textdata, vectorizer, tfidfmodel, top_n):
|
62 |
+
"""
|
63 |
+
TFIDF based keywords extraction
|
64 |
+
|
65 |
+
Params
|
66 |
+
---------
|
67 |
+
vectorizer: trained cont vectorizer model
|
68 |
+
tfidfmodel: TFIDF Tranformer model
|
69 |
+
top_n: Top N keywords to be extracted
|
70 |
+
textdata: text data to which needs keyword extraction
|
71 |
+
|
72 |
+
Return
|
73 |
+
----------
|
74 |
+
keywords: top extracted keywords
|
75 |
+
|
76 |
+
"""
|
77 |
+
features = vectorizer.get_feature_names_out()
|
78 |
+
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(textdata))
|
79 |
+
sorted_items=sort_coo(tf_idf_vector.tocoo())
|
80 |
+
results=extract_topn_from_vector(features,sorted_items,top_n)
|
81 |
+
keywords = [keyword for keyword in results]
|
82 |
+
return keywords
|
83 |
+
|
84 |
def keywordExtraction(sdg:int,sdgdata:List[Text]):
|
85 |
"""
|
86 |
TFIDF based keywords extraction
|
|
|
127 |
results: extracted keywords
|
128 |
"""
|
129 |
if words == 0:
|
130 |
+
# try:
|
131 |
+
# words = int(config.get('sdg','TOP_KEY'))
|
132 |
+
# results = keywords.keywords(textdata, words = words).split("\n")
|
133 |
+
# except Exception as e:
|
134 |
+
# logging.warning(e)
|
135 |
+
logging.info("Textrank using defulat ratio value = 0.1, as no words limit given")
|
136 |
+
results = keywords.keywords(textdata, ratio= ratio).split("\n")
|
137 |
else:
|
138 |
try:
|
139 |
results = keywords.keywords(textdata, words= words).split("\n")
|
utils/preprocessing.py
CHANGED
@@ -179,6 +179,8 @@ class UdfPreProcessor(BaseComponent):
|
|
179 |
split_by: document splitting strategy either as word or sentence
|
180 |
split_length: when synthetically creating the paragrpahs from document,
|
181 |
it defines the length of paragraph.
|
|
|
|
|
182 |
|
183 |
Return
|
184 |
---------
|
|
|
179 |
split_by: document splitting strategy either as word or sentence
|
180 |
split_length: when synthetically creating the paragrpahs from document,
|
181 |
it defines the length of paragraph.
|
182 |
+
split_respect_sentence_boundary: Used when using 'word' strategy for
|
183 |
+
splititng of text.
|
184 |
|
185 |
Return
|
186 |
---------
|
utils/sdg_classifier.py
CHANGED
@@ -1,63 +1,55 @@
|
|
1 |
from haystack.nodes import TransformersDocumentClassifier
|
2 |
from haystack.schema import Document
|
3 |
-
from typing import List, Tuple
|
|
|
4 |
import configparser
|
5 |
import logging
|
6 |
import pandas as pd
|
7 |
from pandas import DataFrame, Series
|
|
|
8 |
from utils.preprocessing import processingpipeline
|
9 |
try:
|
10 |
import streamlit as st
|
11 |
except ImportError:
|
12 |
logging.info("Streamlit not installed")
|
13 |
-
config = configparser.ConfigParser()
|
14 |
-
try:
|
15 |
-
config.read_file(open('paramconfig.cfg'))
|
16 |
-
except Exception:
|
17 |
-
logging.info("paramconfig file not found")
|
18 |
-
st.info("Please place the paramconfig file in the same directory as app.py")
|
19 |
-
|
20 |
-
|
21 |
-
_lab_dict = {0: 'no_cat',
|
22 |
-
1:'SDG 1 - No poverty',
|
23 |
-
2:'SDG 2 - Zero hunger',
|
24 |
-
3:'SDG 3 - Good health and well-being',
|
25 |
-
4:'SDG 4 - Quality education',
|
26 |
-
5:'SDG 5 - Gender equality',
|
27 |
-
6:'SDG 6 - Clean water and sanitation',
|
28 |
-
7:'SDG 7 - Affordable and clean energy',
|
29 |
-
8:'SDG 8 - Decent work and economic growth',
|
30 |
-
9:'SDG 9 - Industry, Innovation and Infrastructure',
|
31 |
-
10:'SDG 10 - Reduced inequality',
|
32 |
-
11:'SDG 11 - Sustainable cities and communities',
|
33 |
-
12:'SDG 12 - Responsible consumption and production',
|
34 |
-
13:'SDG 13 - Climate action',
|
35 |
-
14:'SDG 14 - Life below water',
|
36 |
-
15:'SDG 15 - Life on land',
|
37 |
-
16:'SDG 16 - Peace, justice and strong institutions',
|
38 |
-
17:'SDG 17 - Partnership for the goals',}
|
39 |
|
40 |
@st.cache(allow_output_mutation=True)
|
41 |
-
def load_sdgClassifier():
|
42 |
"""
|
43 |
loads the document classifier using haystack, where the name/path of model
|
44 |
-
in HF-hub as string is used to fetch the model object.
|
|
|
45 |
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
46 |
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
Return: document classifier model
|
49 |
"""
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
doc_classifier = TransformersDocumentClassifier(
|
53 |
-
|
54 |
-
|
55 |
-
return doc_classifier
|
56 |
-
|
57 |
|
|
|
|
|
58 |
|
59 |
@st.cache(allow_output_mutation=True)
|
60 |
-
def sdg_classification(haystackdoc:List[Document]
|
|
|
61 |
"""
|
62 |
Text-Classification on the list of texts provided. Classifier provides the
|
63 |
most appropriate label for each text. these labels are in terms of if text
|
@@ -77,11 +69,7 @@ def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
|
|
77 |
|
78 |
"""
|
79 |
logging.info("Working on SDG Classification")
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
classifier = load_sdgClassifier()
|
84 |
-
results = classifier.predict(haystackdoc)
|
85 |
|
86 |
|
87 |
labels_= [(l.meta['classification']['label'],
|
@@ -92,6 +80,8 @@ def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
|
|
92 |
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
93 |
df.index += 1
|
94 |
df =df[df['Relevancy']>threshold]
|
|
|
|
|
95 |
x = df['SDG'].value_counts()
|
96 |
x = x.rename('count')
|
97 |
x = x.rename_axis('SDG').reset_index()
|
@@ -99,14 +89,17 @@ def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
|
|
99 |
x = x.sort_values(by=['count'])
|
100 |
x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
|
101 |
x['SDG_Num'] = x['SDG'].apply(lambda x: "SDG "+str(x))
|
102 |
-
|
103 |
df['SDG'] = pd.to_numeric(df['SDG'])
|
104 |
df = df.sort_values('SDG')
|
105 |
|
106 |
-
|
107 |
return df, x
|
108 |
|
109 |
-
def runSDGPreprocessingPipeline(filePath, fileName
|
|
|
|
|
|
|
|
|
110 |
"""
|
111 |
creates the pipeline and runs the preprocessing pipeline,
|
112 |
the params for pipeline are fetched from paramconfig
|
@@ -117,7 +110,12 @@ def runSDGPreprocessingPipeline(filePath, fileName)->List[Document]:
|
|
117 |
file_name: filename, in case of streamlit application use
|
118 |
st.session_state['filename']
|
119 |
file_path: filepath, in case of streamlit application use
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
|
123 |
Return
|
@@ -130,16 +128,11 @@ def runSDGPreprocessingPipeline(filePath, fileName)->List[Document]:
|
|
130 |
"""
|
131 |
|
132 |
sdg_processing_pipeline = processingpipeline()
|
133 |
-
split_by = config.get('sdg','SPLIT_BY')
|
134 |
-
split_length = int(config.get('sdg','SPLIT_LENGTH'))
|
135 |
-
split_overlap = int(config.get('sdg','SPLIT_OVERLAP'))
|
136 |
-
remove_punc = bool(int(config.get('sdg','REMOVE_PUNC')))
|
137 |
-
split_respect_sentence_boundary = bool(int(config.get('sdg','RESPECT_SENTENCE_BOUNDARY')))
|
138 |
|
139 |
output_sdg_pre = sdg_processing_pipeline.run(file_paths = filePath,
|
140 |
params= {"FileConverter": {"file_path": filePath, \
|
141 |
"file_name": fileName},
|
142 |
-
"UdfPreProcessor": {"removePunc":
|
143 |
"split_by": split_by, \
|
144 |
"split_length":split_length,\
|
145 |
"split_overlap": split_overlap, \
|
|
|
1 |
from haystack.nodes import TransformersDocumentClassifier
|
2 |
from haystack.schema import Document
|
3 |
+
from typing import List, Tuple, Float
|
4 |
+
from typing_extensions import Literal
|
5 |
import configparser
|
6 |
import logging
|
7 |
import pandas as pd
|
8 |
from pandas import DataFrame, Series
|
9 |
+
from utils.checkconfig import getconfig
|
10 |
from utils.preprocessing import processingpipeline
|
11 |
try:
|
12 |
import streamlit as st
|
13 |
except ImportError:
|
14 |
logging.info("Streamlit not installed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@st.cache(allow_output_mutation=True)
|
17 |
+
def load_sdgClassifier(configFile = None, docClassifierModel = None):
|
18 |
"""
|
19 |
loads the document classifier using haystack, where the name/path of model
|
20 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
21 |
+
model should be passed.
|
22 |
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
23 |
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
24 |
|
25 |
+
Params
|
26 |
+
--------
|
27 |
+
configFile: config file from which to read the model name
|
28 |
+
docClassifierModel: if modelname is passed, it takes a priority if not \
|
29 |
+
found then will look for configfile, else raise error.
|
30 |
+
|
31 |
+
|
32 |
Return: document classifier model
|
33 |
"""
|
34 |
+
if not docClassifierModel:
|
35 |
+
if not configFile:
|
36 |
+
logging.warning("Pass either model name or config file")
|
37 |
+
return
|
38 |
+
else:
|
39 |
+
config = getconfig(configFile)
|
40 |
+
docClassifierModel = config.get('sdg','MODEL')
|
41 |
+
|
42 |
+
logging.info("Loading classifier")
|
43 |
doc_classifier = TransformersDocumentClassifier(
|
44 |
+
model_name_or_path=docClassifierModel,
|
45 |
+
task="text-classification")
|
|
|
|
|
46 |
|
47 |
+
return doc_classifier
|
48 |
+
|
49 |
|
50 |
@st.cache(allow_output_mutation=True)
|
51 |
+
def sdg_classification(haystackdoc:List[Document],
|
52 |
+
threshold:Float, classifiermodel)->Tuple[DataFrame,Series]:
|
53 |
"""
|
54 |
Text-Classification on the list of texts provided. Classifier provides the
|
55 |
most appropriate label for each text. these labels are in terms of if text
|
|
|
69 |
|
70 |
"""
|
71 |
logging.info("Working on SDG Classification")
|
72 |
+
results = classifiermodel.predict(haystackdoc)
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
labels_= [(l.meta['classification']['label'],
|
|
|
80 |
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
81 |
df.index += 1
|
82 |
df =df[df['Relevancy']>threshold]
|
83 |
+
|
84 |
+
# creating the dataframe for value counts of SDG, along with 'title' of SDGs
|
85 |
x = df['SDG'].value_counts()
|
86 |
x = x.rename('count')
|
87 |
x = x.rename_axis('SDG').reset_index()
|
|
|
89 |
x = x.sort_values(by=['count'])
|
90 |
x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
|
91 |
x['SDG_Num'] = x['SDG'].apply(lambda x: "SDG "+str(x))
|
92 |
+
|
93 |
df['SDG'] = pd.to_numeric(df['SDG'])
|
94 |
df = df.sort_values('SDG')
|
95 |
|
|
|
96 |
return df, x
|
97 |
|
98 |
+
def runSDGPreprocessingPipeline(filePath, fileName,
|
99 |
+
split_by: Literal["sentence", "word"] = 'sentence',
|
100 |
+
split_respect_sentence_boundary = False,
|
101 |
+
split_length:int = 2, split_overlap = 0,
|
102 |
+
removePunc = False)->List[Document]:
|
103 |
"""
|
104 |
creates the pipeline and runs the preprocessing pipeline,
|
105 |
the params for pipeline are fetched from paramconfig
|
|
|
110 |
file_name: filename, in case of streamlit application use
|
111 |
st.session_state['filename']
|
112 |
file_path: filepath, in case of streamlit application use
|
113 |
+
removePunc: to remove all Punctuation including ',' and '.' or not
|
114 |
+
split_by: document splitting strategy either as word or sentence
|
115 |
+
split_length: when synthetically creating the paragrpahs from document,
|
116 |
+
it defines the length of paragraph.
|
117 |
+
split_respect_sentence_boundary: Used when using 'word' strategy for
|
118 |
+
splititng of text.
|
119 |
|
120 |
|
121 |
Return
|
|
|
128 |
"""
|
129 |
|
130 |
sdg_processing_pipeline = processingpipeline()
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
output_sdg_pre = sdg_processing_pipeline.run(file_paths = filePath,
|
133 |
params= {"FileConverter": {"file_path": filePath, \
|
134 |
"file_name": fileName},
|
135 |
+
"UdfPreProcessor": {"removePunc": removePunc, \
|
136 |
"split_by": split_by, \
|
137 |
"split_length":split_length,\
|
138 |
"split_overlap": split_overlap, \
|