|
from haystack.nodes import TransformersDocumentClassifier |
|
from haystack.schema import Document |
|
from typing import List, Tuple |
|
from typing_extensions import Literal |
|
import configparser |
|
import logging |
|
import pandas as pd |
|
from pandas import DataFrame, Series |
|
from utils.checkconfig import getconfig |
|
from utils.preprocessing import processingpipeline |
|
try: |
|
import streamlit as st |
|
except ImportError: |
|
logging.info("Streamlit not installed") |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_sdgClassifier(configFile = None, docClassifierModel = None): |
|
""" |
|
loads the document classifier using haystack, where the name/path of model |
|
in HF-hub as string is used to fetch the model object.Either configfile or |
|
model should be passed. |
|
1. https://docs.haystack.deepset.ai/reference/document-classifier-api |
|
2. https://docs.haystack.deepset.ai/docs/document_classifier |
|
|
|
Params |
|
-------- |
|
configFile: config file from which to read the model name |
|
docClassifierModel: if modelname is passed, it takes a priority if not \ |
|
found then will look for configfile, else raise error. |
|
|
|
|
|
Return: document classifier model |
|
""" |
|
if not docClassifierModel: |
|
if not configFile: |
|
logging.warning("Pass either model name or config file") |
|
return |
|
else: |
|
config = getconfig(configFile) |
|
docClassifierModel = config.get('sdg','MODEL') |
|
|
|
logging.info("Loading classifier") |
|
doc_classifier = TransformersDocumentClassifier( |
|
model_name_or_path=docClassifierModel, |
|
task="text-classification") |
|
|
|
return doc_classifier |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def sdg_classification(haystackdoc:List[Document], |
|
threshold:float, classifiermodel)->Tuple[DataFrame,Series]: |
|
""" |
|
Text-Classification on the list of texts provided. Classifier provides the |
|
most appropriate label for each text. these labels are in terms of if text |
|
belongs to which particular Sustainable Devleopment Goal (SDG). |
|
|
|
Params |
|
--------- |
|
haystackdoc: List of haystack Documents. The output of Preprocessing Pipeline |
|
contains the list of paragraphs in different format,here the list of |
|
Haystack Documents is used. |
|
|
|
Returns |
|
---------- |
|
df: Dataframe with two columns['SDG:int', 'text'] |
|
x: Series object with the unique SDG covered in the document uploaded and |
|
the number of times it is covered/discussed/count_of_paragraphs. |
|
|
|
""" |
|
logging.info("Working on SDG Classification") |
|
results = classifiermodel.predict(haystackdoc) |
|
|
|
|
|
labels_= [(l.meta['classification']['label'], |
|
l.meta['classification']['score'],l.content,) for l in results] |
|
|
|
df = DataFrame(labels_, columns=["SDG","Relevancy","text"]) |
|
|
|
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True) |
|
df.index += 1 |
|
df =df[df['Relevancy']>threshold] |
|
|
|
|
|
x = df['SDG'].value_counts() |
|
x = x.rename('count') |
|
x = x.rename_axis('SDG').reset_index() |
|
x["SDG"] = pd.to_numeric(x["SDG"]) |
|
x = x.sort_values(by=['count']) |
|
x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x]) |
|
x['SDG_Num'] = x['SDG'].apply(lambda x: "SDG "+str(x)) |
|
|
|
df['SDG'] = pd.to_numeric(df['SDG']) |
|
df = df.sort_values('SDG') |
|
|
|
return df, x |
|
|
|
def runSDGPreprocessingPipeline(filePath, fileName, |
|
split_by: Literal["sentence", "word"] = 'sentence', |
|
split_respect_sentence_boundary = False, |
|
split_length:int = 2, split_overlap = 0, |
|
removePunc = False)->List[Document]: |
|
""" |
|
creates the pipeline and runs the preprocessing pipeline, |
|
the params for pipeline are fetched from paramconfig |
|
|
|
Params |
|
------------ |
|
|
|
file_name: filename, in case of streamlit application use |
|
st.session_state['filename'] |
|
file_path: filepath, in case of streamlit application use |
|
removePunc: to remove all Punctuation including ',' and '.' or not |
|
split_by: document splitting strategy either as word or sentence |
|
split_length: when synthetically creating the paragrpahs from document, |
|
it defines the length of paragraph. |
|
split_respect_sentence_boundary: Used when using 'word' strategy for |
|
splititng of text. |
|
|
|
|
|
Return |
|
-------------- |
|
List[Document]: When preprocessing pipeline is run, the output dictionary |
|
has four objects. For the Haysatck implementation of SDG classification we, |
|
need to use the List of Haystack Document, which can be fetched by |
|
key = 'documents' on output. |
|
|
|
""" |
|
|
|
sdg_processing_pipeline = processingpipeline() |
|
|
|
output_sdg_pre = sdg_processing_pipeline.run(file_paths = filePath, |
|
params= {"FileConverter": {"file_path": filePath, \ |
|
"file_name": fileName}, |
|
"UdfPreProcessor": {"removePunc": removePunc, \ |
|
"split_by": split_by, \ |
|
"split_length":split_length,\ |
|
"split_overlap": split_overlap, \ |
|
"split_respect_sentence_boundary":split_respect_sentence_boundary}}) |
|
|
|
return output_sdg_pre |
|
|