File size: 12,498 Bytes
5d4054c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..')))
import pandas as pd


from src.rag.pipeline import RAGPipeline
import streamlit as st
from src.utils.data import (
    build_filter,
    get_filter_values,
    get_meta,
    load_json,
    load_css,
)
from src.utils.writer import typewriter

st.set_page_config(layout="wide")



EMBEDDING_MODEL = "sentence-transformers/distiluse-base-multilingual-cased-v1"
PROMPT_TEMPLATE = os.path.join("src", "rag", "prompt_template.yaml")


@st.cache_data
def load_css_style(path: str) -> None:
    load_css(path)


@st.cache_data
def get_meta_data() -> pd.DataFrame:
    return pd.read_csv(
        os.path.join("database", "meta_data.csv"), dtype=({"retriever_id": str})
    )


@st.cache_data
def get_authors_taxonomy() -> dict[str, list[str]]:
    return load_json(os.path.join("data", "authors_filter.json"))


@st.cache_data
def get_draft_cat_taxonomy() -> dict[str, list[str]]:
    return load_json(os.path.join("data", "draftcat_taxonomy_filter.json"))


@st.cache_data
def get_example_prompts() -> list[str]:
    return [
        example["question"]
        for example in load_json(os.path.join("data", "example_prompts.json"))
    ]


@st.cache_resource
def load_pipeline() -> RAGPipeline:
    return RAGPipeline(
        embedding_model=EMBEDDING_MODEL,
        prompt_template=PROMPT_TEMPLATE,
    )


@st.cache_data
def load_app_init() -> None:
    # Define the title of the app
    st.title("INC Plastic Treaty - Q&A")

    # add warning emoji and style
    st.markdown(
        """
        <p class="remark"> ⚠️ Remark:
        The app is a beta version that serves as a basis for further development. We are aware that the performance is not yet sufficient and that the data basis is not yet complete. We are grateful for any feedback that contributes to the further development and improvement of the app!
    """,
        unsafe_allow_html=True,
    )

    # add explanation to the app
    st.markdown(
        """
        <p class="description">
        The app aims to facilitate the search for information and documents related to the UN Plastics Treaty Negotiations. The database includes all relevant documents that are available <a href=https://www.unep.org/inc-plastic-pollution target="_blank">here</a>. Users can query the data through a chatbot. Please note that, due to technical constraints, only a maximum of 10 documents can be used to generate the answer. A comprehensive response can therefore not be guaranteed. However, all relevant documents can be accessed via a link using the filter functions.
        Filter functions are available to narrow down the data by country/author, zero draft categories and negotiation rounds. Pre-selecting relevant data enhances the accuracy of generated answers. Additionally, all documents selected via the filter function can be accessed via a link.
        """,
        unsafe_allow_html=True,
    )


load_css_style("style/style.css")


# Load the data
metadata = get_meta_data()
authors_taxonomy = get_authors_taxonomy()
draft_cat_taxonomy = get_draft_cat_taxonomy()
example_prompts = get_example_prompts()

# Load pipeline
pipeline = load_pipeline()

# Load app init
load_app_init()


filter_col = st.columns(1)
# Filter column
with filter_col[0]:
    st.markdown("## Select Filters")
    author_col, round_col, draft_cat_col = st.columns([1, 1, 1])

    with author_col:
        st.markdown("### Authors")
        selected_author_parent = st.multiselect(
            "Entity Parent", list(authors_taxonomy.keys())
        )

        available_child_items = []
        for category in selected_author_parent:
            available_child_items.extend(authors_taxonomy[category])

        selected_authors = st.multiselect("Entity", available_child_items)

    with round_col:
        st.markdown("### Round")
        negotiation_rounds = get_filter_values(metadata, "round")
        selected_rounds = st.multiselect("Round", negotiation_rounds)

    with draft_cat_col:
        st.markdown("### Draft Categories")
        selected_draft_cats_parent = st.multiselect(
            "Draft Categories Parent", list(draft_cat_taxonomy.keys())
        )
        available_draft_cats_child_items = []
        for category in selected_draft_cats_parent:
            available_draft_cats_child_items.extend(draft_cat_taxonomy[category])

        selected_draft_cats = st.multiselect(
            "Draft Categories", available_draft_cats_child_items
        )


prompt_col, output_col = st.columns([1, 1.5])
# make the buttons text smaller


# GPT column
with prompt_col:
    st.markdown("## Filter documents")
    st.markdown(
        """
        * The filter function allows you to see all documents that match the selected filters.
        * Additionally, all documents selected via the filter function can be accessed via a link.
        * Alternatively, you can ask a question to the model. The model will then provide you with an answer based on the filtered documents.
        """
    )
    trigger_filter = st.session_state.setdefault("trigger", False)
    if st.button("Filter documents"):
        filter_selection_transformed = build_filter(
            meta_data=metadata,
            authors_filter=selected_authors,
            draft_cats_filter=selected_draft_cats,
            round_filter=selected_rounds,
        )
        documents = pipeline.document_store.get_all_documents(
            filters=filter_selection_transformed
        )
        trigger_filter = True

    st.markdown("## Ask a question")
    if "prompt" not in st.session_state:
        prompt = st.text_area("")
    if (
        "prompt" in st.session_state
        and st.session_state.prompt in example_prompts  # noqa: E501
    ):  # noqa: E501
        prompt = st.text_area(
            "Enter a question", value=st.session_state.prompt
        )  # noqa: E501
    if (
        "prompt" in st.session_state
        and st.session_state.prompt not in example_prompts  # noqa: E501
    ):  # noqa: E501
        del st.session_state["prompt"]
        prompt = st.text_area("Enter a question")

    trigger_ask = st.session_state.setdefault("trigger", False)
    if st.button("Ask"):
        with st.status("Filtering documents...", expanded=False) as status:
            if filter_selection_transformed == {}:
                st.warning(
                    "No filters selected. We highly recommend to use filters otherwise the answer might not be accurate. In addition you might experience performance issues since the model has to analyze all available documents."
                )
            filter_selection_transformed = build_filter(
                meta_data=metadata,
                authors_filter=selected_authors,
                draft_cats_filter=selected_draft_cats,
                round_filter=selected_rounds,
            )

            documents = pipeline.document_store.get_all_documents(
                filters=filter_selection_transformed
            )
            status.update(
                label="Filtering documents completed!", state="complete", expanded=False
            )
        with st.status("Answering question...", expanded=True) as status:
            result = pipeline(prompt=prompt, filters=filter_selection_transformed)
            trigger_ask = True
            status.update(
                label="Answering question completed!", state="complete", expanded=False
            )

    st.markdown("### Examples")
    st.markdown(
        """
        * These are example prompts that can be used to ask questions to the model
        * Click on a prompt to use it as a question. You can also type your own question in the text area above.
        * For questions like "How do country a, b and c [...]" please make sure to select the countries in the filter section. Otherwise the answer will not be accurate. In general we highly recommend to use the filter functions to narrow down the data.
        """
    )

    for i, prompt in enumerate(example_prompts):
        # with col[i % 4]:
        if st.button(prompt):
            if "key" not in st.session_state:
                st.session_state["prompt"] = prompt
    # Define the button


if trigger_ask:
    with output_col:
        meta_data = get_meta(result=result)
        answer = result["answers"][0].answer

        meta_data_cleaned = []
        seen_retriever_ids = set()

        for data in meta_data:
            retriever_id = data["retriever_id"]
            content = data["content"]
            if retriever_id not in seen_retriever_ids:
                meta_data_cleaned.append(
                    {
                        "retriever_id": retriever_id,
                        "href": data["href"],
                        "content": [content],
                    }
                )
                seen_retriever_ids.add(retriever_id)
            else:
                for i, item in enumerate(meta_data_cleaned):
                    if item["retriever_id"] == retriever_id:
                        meta_data_cleaned[i]["content"].append(content)

        references = ["\n"]
        for data in meta_data_cleaned:
            retriever_id = data["retriever_id"]
            href = data["href"]
            references.append(f"-[{retriever_id}]: {href} \n")
        st.write("#### 📌 Answer")
        typewriter(
            text=answer,
            references=references,
            speed=100,
        )

        with st.expander("Show more information to the documents"):
            for data in meta_data_cleaned:
                markdown_text = f"- Document: {data['retriever_id']}\n"
                markdown_text += "    - Text passages\n"
                for content in data["content"]:
                    content = content.replace("[", "").replace("]", "").replace("'", "")
                    content = " ".join(content.split())
                    markdown_text += f"        - {content}\n"
                st.write(markdown_text)

    col4 = st.columns(1)
    with col4[0]:
        references = []
        for document in documents:
            authors = document.meta["author"]
            authors = authors.replace("'", "").replace("[", "").replace("]", "")
            href = document.meta["href"]
            source = f"- {authors}: {href}"
            references.append(source)
            references = list(set(references))
            references = sorted(references)
        st.markdown("### Overview of all filtered documents")
        st.markdown(
            f"<p class='description'> The answer above results from the most similar text passages (top 7) from the documents that you can find under 'References' in the answer block. Below you will find an overview of all documents that match the filters you have selected. Please note that the above answer is based specifically on the highlighted references above and does not include the findings from all the filtered documents shown below. \n For your current filtering, {len(references)} documents were found. </p>",
            unsafe_allow_html=True,
        )
        for reference in references:
            st.write(reference)
    trigger = 0


if trigger_filter:
    with output_col:
        references = []
        for document in documents:
            authors = document.meta["author"]
            authors = authors.replace("'", "").replace("[", "").replace("]", "")
            href = document.meta["href"]
            round_ = document.meta["round"]
            draft_labs = document.meta["draft_labs"]
            references.append(
                {
                    "author": authors,
                    "href": href,
                    "draft_labs": draft_labs,
                    "round": round_,
                }
            )
        references = pd.DataFrame(references)
        references = references.drop_duplicates()
        st.markdown("### Overview of all filtered documents")
        # show
        # make columns author and draft_labs bigger and make href width smaller and round width smaller
        st.dataframe(
            references,
            hide_index=True,
            column_config={
                "author": st.column_config.ListColumn("Authors"),
                "href": st.column_config.LinkColumn("Link to Document"),
                "draft_labs": st.column_config.ListColumn("Draft Categories"),
                "round": st.column_config.NumberColumn("Round"),
            },
        )