Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 20,086 Bytes
d064c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import base64
import time
from pathlib import Path
import pandas as pd
import streamlit as st
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from src.document_store.get_index import get_index
from src.rag.pipeline import RAGPipeline
from src.utils.data import load_css, load_json
from src.utils.writer import typewriter
DATA_BASE_PATH = Path(__file__).parent.parent.parent.parent / "data"
# Function to load and encode the image
def get_base64_image(image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
@st.cache_data
def load_css_style() -> None:
load_css(Path(__file__).parent.parent.parent.parent / "style" / "style.css")
@st.cache_resource
def load_knowledge_hub_pipeline(
template: str,
) -> tuple[QdrantDocumentStore, RAGPipeline]:
knowledge_hub_index = get_index(index="knowledge_hub_data")
knowledge_hub_rag = RAGPipeline(
document_store=knowledge_hub_index, top_k=5, template=template
)
return knowledge_hub_index, knowledge_hub_rag
@st.cache_resource
def get_organization_filter() -> dict | list:
return load_json(DATA_BASE_PATH / "taxonomies" / "organization.json")
@st.cache_data
def load_template() -> str:
path = (
Path(__file__).parent.parent.parent
/ "rag"
/ "prompt_templates"
/ "inc_template.txt"
)
with open(path, "r") as file:
template = file.read()
return template
@st.cache_data
def get_example_prompts() -> list[str]:
return [
example["question"]
for example in load_json(
DATA_BASE_PATH / "example_prompts" / "example_prompts_knowledge_hub.json"
)
]
@st.cache_resource
def get_region_filter() -> dict | list:
return load_json(DATA_BASE_PATH / "taxonomies" / "region.json")
@st.cache_resource
def get_type_of_document_filter() -> dict | list:
return load_json(DATA_BASE_PATH / "taxonomies" / "type_of_document.json")
@st.cache_data
def set_trigger_state_values() -> tuple[bool, bool]:
trigger_filter_k = st.session_state.setdefault("trigger_k", False)
trigger_ask_k = st.session_state.setdefault("trigger_k", False)
return trigger_filter_k, trigger_ask_k
@st.cache_data
def about_knowledge_hub() -> None:
st.markdown("""<p class="header"> Help us Improve! </p>""", unsafe_allow_html=True)
st.markdown(
"""<p class="description"> We would appreciate your feedback and support to improve the app. You can fill out a quick feedback form (maximal 5 minutes) or use the in-depth survey (maximal 15 minutes). </p>""",
unsafe_allow_html=True,
)
review, in_depth_review, _ = st.columns(spec=[0.7, 1.0, 4], gap="large")
with review:
st.link_button(
label="Feedback",
url="https://forms.gle/PPT5g558utGDUAGh6",
icon=":material/reviews:",
)
with in_depth_review:
st.link_button(
label="Survey",
url="https://docs.google.com/forms/d/1-WNS0ZdAuystajf2i6iSR5HpRfvV1LYq_TcQfaIMvkA",
icon=":material/rate_review:",
)
logo = get_base64_image("static/images/logo.png")
st.write("\n")
st.write("\n")
st.write("\n")
st.markdown(
f"""<div class="footer">
<h3>About</h3>
<div class="content">
The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH <br>
is a globally active service provider dedicated to international cooperation <br>
for sustainable development and it’s active in over 120 countries. <br> <br>
The GIZ Data Lab specializes in harnessing data for development, <br>
driving innovative solutions in international cooperation
to address <br> real-world challenges. <br> <br>
Our work on NegotiateAI started in 2023. You can find more information <br>
about the NegotiateAI project on our <a href="https://www.blog-datalab.com/home/negotiateai/">website</a>.
</div>
<img src="data:image/png;base64,{logo}" class="logo" />
</div>
""",
unsafe_allow_html=True,
)
@st.cache_data
def load_app_init() -> None:
description_knowledge_hub_col_1, _ = st.columns([0.66, 1])
with description_knowledge_hub_col_1:
with st.expander("About", icon=":material/info:"):
st.markdown(
"""
<p class="description"> Query and engage with the Plastic Knowledge Hub to obtain a wealth of resources that will support you to learn more about the main topics of plastic pollution. Work around with the filters to get more precise information. <br>
While the generated answers take into account up to eight documents at a time due to technical limitations, users can still access the full set of filtered documents via direct links for comprehensive exploration.
</p>
""",
unsafe_allow_html=True,
)
st.write("\n")
st.write("\n")
def init_knowledge_hub_page():
load_css_style()
load_app_init()
# Load Cache Data and Resources
trigger_filter_k, trigger_ask_k = set_trigger_state_values()
knowledge_hub_template = load_template()
knowledge_hub_index, knowledge_hub_rag = load_knowledge_hub_pipeline(
template=knowledge_hub_template
)
example_prompts_k = get_example_prompts()
organization_filter = get_organization_filter()
region_filter = get_region_filter()
type_of_document_filter = get_type_of_document_filter()
# Application Column
application_col = st.columns(1)
with application_col[0]:
st.write("\n")
organization, region, type_of_document = st.columns(3)
with organization:
selected_organization = st.multiselect(
label="Organization",
options=organization_filter,
label_visibility="visible",
placeholder="Select organization",
)
with region:
selected_region = st.multiselect(
label="Region",
options=region_filter,
label_visibility="visible",
placeholder="Select region",
)
with type_of_document:
selected_type_of_document = st.multiselect(
label="Type of Document",
options=type_of_document_filter,
label_visibility="visible",
placeholder="Select type of document",
)
st.write("\n")
asking_k, filtering_k = st.tabs(["Ask a question", "Filter documents"])
with asking_k:
application_col_ask_k, output_col_ask_k = st.columns([1, 1.5])
with application_col_ask_k:
st.markdown(
"""
<p class="description">
Please ask a question to get an answer or show documents based on the selected filters. This step is optional.</p>
""",
unsafe_allow_html=True,
)
if "prompt_k" not in st.session_state:
prompt_k = st.text_area(label="")
if (
"prompt_k" in st.session_state
and st.session_state.prompt_k in example_prompts_k
):
prompt_k = st.text_area(
label="Enter a question",
value=st.session_state.prompt_k,
)
if (
"prompt_k" in st.session_state
and st.session_state.prompt_k not in example_prompts_k
):
del st.session_state["prompt_k"]
prompt_k = st.text_area(label="Enter a question")
trigger_ask_k = st.session_state.setdefault("trigger", False)
if st.button(
"Ask", key="ask_k", type="primary", icon=":material/send:"
):
if prompt_k == "":
st.error(
"Please enter a question. Reloading the app in few seconds",
icon=":material/error:",
)
time.sleep(3)
st.rerun()
with st.spinner("Querying Documents..."):
filter_selection = {
"organization": selected_organization,
"region": selected_region,
"type_of_document": selected_type_of_document,
}
if (
not selected_region
and not selected_organization
and not selected_type_of_document
):
st.warning(
"No filters selected. All documents will be used for the question. Longer processing time expected. Please consider using the filter functions to narrow down the data.",
icon=":material/warning:",
)
filters = knowledge_hub_rag.build_filter(
filter_selections=filter_selection
)
try:
docs = knowledge_hub_index.filter_documents(filters=filters)
except Exception:
st.error(
"An error occured while filtering the documents. Please try again. App will reload in a few seconds. If the app does not reload, please refresh the page.",
icon=":material/error:",
)
trigger_ask_k = False
time.sleep(3)
st.rerun()
if not docs:
st.error(
"The combination of filters you've chosen does not match any documents. Please try another combination of filters. If a filter combination does not return any documents, it means that there are no documents that match the selected filters and therefore no answer can be given.",
icon=":material/error:",
)
trigger_ask_k = False
st.stop()
else:
st.success("Filtering completed.", icon=":material/check:")
with st.spinner("Answering question..."):
try:
result = knowledge_hub_rag.run(
query=prompt_k, filter_selections=filter_selection
)
except Exception:
st.error(
"An error occured while querying the documents. Please try again. App will reload in a few seconds. If the app does not reload, please refresh the page.",
icon=":material/error:",
)
trigger_ask_k = False
time.sleep(3)
st.rerun()
trigger_ask_k = True
st.success(
"Answering question completed.", icon=":material/check:"
)
st.markdown(
"***≡ Examples***",
help="These are example prompts that can be used to ask questions to the model. Click on a prompt to use it as a question. You can also type your own question in the text area above. In general we highly recommend to use the filter functions to narrow down the data.",
)
st.caption("Double click to select the prompt")
for i, prompt_inc in enumerate(example_prompts_k):
# with col[i % 4]:
if st.button(prompt_inc):
if "key" not in st.session_state:
st.session_state["prompt_k"] = prompt_inc
with filtering_k:
application_col_filter_k, output_col_filter_k = st.columns([1, 1.5])
with application_col_filter_k:
st.markdown(
"""
<p class="description"> This filter function allows you to see all documents that match the selected filters. The documents can be accessed via a link \n </p>
""",
unsafe_allow_html=True,
)
if st.button(
"Filter documents",
key="filter_docuemts_k",
type="primary",
icon=":material/filter_alt:",
):
if (
not selected_region
and not selected_organization
and not selected_type_of_document
):
st.info(
"No filteres selected. All documents will be shown. Longer processing time expected."
)
with st.spinner("Filtering documents..."):
filter = RAGPipeline.build_filter(
filter_selections={
"organization": selected_organization,
"region": selected_region,
"type_of_document": selected_type_of_document,
}
)
try:
result = knowledge_hub_index.filter_documents(
filters=filter
)
except Exception:
st.error(
"An error occured while filtering the documents. Please try again. App will reload in a few seconds. If the app does not reload, please refresh the page.",
icon=":material/error:",
)
trigger_filter_k = False
time.sleep(3)
st.rerun()
retriever_ids = set()
result_meta = []
for doc in result:
retriever_id = doc.meta["retriever_id"]
if retriever_id not in retriever_ids:
result_meta.append(
{
"organization": doc.meta["organization"],
"title": doc.meta["title"],
"year": doc.meta["year"],
"region": doc.meta["region"],
"keywords": doc.meta["key_words"],
"type_of_document": doc.meta[
"type_of_document"
],
"type_of_organization": doc.meta[
"type_of_organization"
],
"href": doc.meta["href"],
}
)
retriever_ids.add(retriever_id)
else:
continue
result_df = pd.DataFrame(result_meta)
if result_df.empty:
st.info(
"No documents found for the combination of filters you've chosen. All countries are represented at least once in the data. Remove the draft categories to see all documents for the countries selected or try other draft categories and/or rounds"
)
trigger_filter_k = False
else:
trigger_filter_k = True
if trigger_filter_k:
with output_col_filter_k:
st.markdown("### Overview of all filtered documents")
st.dataframe(
result_df,
hide_index=True,
use_container_width=True,
column_config={
"organization": st.column_config.ListColumn("Organization"),
"title": st.column_config.TextColumn("Title"),
"year": st.column_config.TextColumn("Year"),
"region": st.column_config.ListColumn("Region"),
"keywords": st.column_config.ListColumn("Keywords"),
"type_of_document": st.column_config.TextColumn(
"Type of Document"
),
"type_of_organization": st.column_config.TextColumn(
"Type of Organization"
),
"href": st.column_config.LinkColumn("Link"),
},
)
trigger_filter_k = False
if trigger_ask_k:
with output_col_ask_k:
if result is None:
st.error(
"Open AI rate limit exceeded. Please try again in a few seconds."
)
st.stop()
reference_data = [
(doc.meta["retriever_id"], doc.meta["href"])
for doc in result["retriever"]["documents"]
]
references = ["\n"]
for retriever_id, href in reference_data:
references.append(f"-[{retriever_id}]: {href} \n")
references = list(set(references))
st.markdown(
"""<svg xmlns="http://www.w3.org/2000/svg" height="24px" viewBox="0 -960 960 960" width="24px" fill="#077493"><path d="m640-480 80 80v80H520v240l-40 40-40-40v-240H240v-80l80-80v-280h-40v-80h400v80h-40v280Zm-286 80h252l-46-46v-314H400v314l-46 46Zm126 0Z"/></svg> <b>Answer</b>""",
unsafe_allow_html=True,
)
typewriter(
text=result["llm"]["replies"][0],
references=references,
speed=100,
app="knowledge_hub",
)
with st.expander("Show more information to the documents"):
sorted_docs = sorted(
result["retriever"]["documents"],
key=lambda x: x.meta["retriever_id"],
)
current_doc = None
markdown_text = ""
for doc in sorted_docs:
print(current_doc)
if doc.meta["retriever_id"] != current_doc:
markdown_text += f"- Document: {doc.meta['retriever_id']}\n"
markdown_text += " - Text passages\n"
markdown_text += f" - {doc.content}\n"
else:
markdown_text += f" - {doc.content}\n"
current_doc = doc.meta["retriever_id"]
st.write(markdown_text)
trigger_ask_k = False
st.markdown(
"""<hr style="height:2px;border:none;color:#077493;background-color:#077493;" /> """,
unsafe_allow_html=True,
)
about_knowledge_hub()
|