File size: 20,086 Bytes
d064c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import base64
import time
from pathlib import Path

import pandas as pd
import streamlit as st
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore

from src.document_store.get_index import get_index
from src.rag.pipeline import RAGPipeline
from src.utils.data import load_css, load_json
from src.utils.writer import typewriter

DATA_BASE_PATH = Path(__file__).parent.parent.parent.parent / "data"


# Function to load and encode the image
def get_base64_image(image_path):
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode()


@st.cache_data
def load_css_style() -> None:
    load_css(Path(__file__).parent.parent.parent.parent / "style" / "style.css")


@st.cache_resource
def load_knowledge_hub_pipeline(
    template: str,
) -> tuple[QdrantDocumentStore, RAGPipeline]:
    knowledge_hub_index = get_index(index="knowledge_hub_data")
    knowledge_hub_rag = RAGPipeline(
        document_store=knowledge_hub_index, top_k=5, template=template
    )
    return knowledge_hub_index, knowledge_hub_rag


@st.cache_resource
def get_organization_filter() -> dict | list:
    return load_json(DATA_BASE_PATH / "taxonomies" / "organization.json")


@st.cache_data
def load_template() -> str:
    path = (
        Path(__file__).parent.parent.parent
        / "rag"
        / "prompt_templates"
        / "inc_template.txt"
    )
    with open(path, "r") as file:
        template = file.read()
    return template


@st.cache_data
def get_example_prompts() -> list[str]:
    return [
        example["question"]
        for example in load_json(
            DATA_BASE_PATH / "example_prompts" / "example_prompts_knowledge_hub.json"
        )
    ]


@st.cache_resource
def get_region_filter() -> dict | list:
    return load_json(DATA_BASE_PATH / "taxonomies" / "region.json")


@st.cache_resource
def get_type_of_document_filter() -> dict | list:
    return load_json(DATA_BASE_PATH / "taxonomies" / "type_of_document.json")


@st.cache_data
def set_trigger_state_values() -> tuple[bool, bool]:
    trigger_filter_k = st.session_state.setdefault("trigger_k", False)
    trigger_ask_k = st.session_state.setdefault("trigger_k", False)
    return trigger_filter_k, trigger_ask_k


@st.cache_data
def about_knowledge_hub() -> None:
    st.markdown("""<p class="header"> Help us Improve! </p>""", unsafe_allow_html=True)
    st.markdown(
        """<p class="description"> We would appreciate your feedback and support to improve the app. You can fill out a quick feedback form (maximal 5 minutes) or use the in-depth survey (maximal 15 minutes). </p>""",
        unsafe_allow_html=True,
    )
    review, in_depth_review, _ = st.columns(spec=[0.7, 1.0, 4], gap="large")
    with review:
        st.link_button(
            label="Feedback",
            url="https://forms.gle/PPT5g558utGDUAGh6",
            icon=":material/reviews:",
        )
    with in_depth_review:
        st.link_button(
            label="Survey",
            url="https://docs.google.com/forms/d/1-WNS0ZdAuystajf2i6iSR5HpRfvV1LYq_TcQfaIMvkA",
            icon=":material/rate_review:",
        )

    logo = get_base64_image("static/images/logo.png")

    st.write("\n")
    st.write("\n")
    st.write("\n")

    st.markdown(
        f"""<div class="footer">
            <h3>About</h3>
            <div class="content">
             The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH <br>
             is a globally active service provider dedicated to international cooperation <br>
             for sustainable development and it’s active in over 120 countries. <br> <br>
             The GIZ Data Lab specializes in harnessing data for development,  <br>
             driving innovative solutions in international cooperation
             to address <br> real-world  challenges. <br> <br>
             Our work on NegotiateAI started in 2023. You can find more information <br>
             about the NegotiateAI project on our <a href="https://www.blog-datalab.com/home/negotiateai/">website</a>.
            </div>
            <img src="data:image/png;base64,{logo}" class="logo" />
    </div>
    """,
        unsafe_allow_html=True,
    )


@st.cache_data
def load_app_init() -> None:
    description_knowledge_hub_col_1, _ = st.columns([0.66, 1])
    with description_knowledge_hub_col_1:
        with st.expander("About", icon=":material/info:"):
            st.markdown(
                """
                <p class="description"> Query and engage with the Plastic Knowledge Hub to obtain a wealth of resources that will support you to learn more about the main topics of plastic pollution. Work around with the filters to get more precise information. <br>
                While the generated answers take into account up to eight documents at a time due to technical limitations, users can still access the full set of filtered documents via direct links for comprehensive exploration.
                </p>
                """,
                unsafe_allow_html=True,
            )
    st.write("\n")
    st.write("\n")


def init_knowledge_hub_page():
    load_css_style()
    load_app_init()

    # Load Cache Data and Resources
    trigger_filter_k, trigger_ask_k = set_trigger_state_values()
    knowledge_hub_template = load_template()
    knowledge_hub_index, knowledge_hub_rag = load_knowledge_hub_pipeline(
        template=knowledge_hub_template
    )
    example_prompts_k = get_example_prompts()
    organization_filter = get_organization_filter()
    region_filter = get_region_filter()
    type_of_document_filter = get_type_of_document_filter()

    # Application Column
    application_col = st.columns(1)

    with application_col[0]:
        st.write("\n")
        organization, region, type_of_document = st.columns(3)

        with organization:
            selected_organization = st.multiselect(
                label="Organization",
                options=organization_filter,
                label_visibility="visible",
                placeholder="Select organization",
            )
        with region:
            selected_region = st.multiselect(
                label="Region",
                options=region_filter,
                label_visibility="visible",
                placeholder="Select region",
            )
        with type_of_document:
            selected_type_of_document = st.multiselect(
                label="Type of Document",
                options=type_of_document_filter,
                label_visibility="visible",
                placeholder="Select type of document",
            )

        st.write("\n")

        asking_k, filtering_k = st.tabs(["Ask a question", "Filter documents"])

        with asking_k:
            application_col_ask_k, output_col_ask_k = st.columns([1, 1.5])
            with application_col_ask_k:
                st.markdown(
                    """
                    <p class="description">
                    Please ask a question to get an answer or show documents based on the selected filters. This step is optional.</p>
                    """,
                    unsafe_allow_html=True,
                )

                if "prompt_k" not in st.session_state:
                    prompt_k = st.text_area(label="")
                if (
                    "prompt_k" in st.session_state
                    and st.session_state.prompt_k in example_prompts_k
                ):
                    prompt_k = st.text_area(
                        label="Enter a question",
                        value=st.session_state.prompt_k,
                    )
                if (
                    "prompt_k" in st.session_state
                    and st.session_state.prompt_k not in example_prompts_k
                ):
                    del st.session_state["prompt_k"]
                    prompt_k = st.text_area(label="Enter a question")

                trigger_ask_k = st.session_state.setdefault("trigger", False)

                if st.button(
                    "Ask", key="ask_k", type="primary", icon=":material/send:"
                ):
                    if prompt_k == "":
                        st.error(
                            "Please enter a question. Reloading the app in few seconds",
                            icon=":material/error:",
                        )
                        time.sleep(3)
                        st.rerun()

                    with st.spinner("Querying Documents..."):
                        filter_selection = {
                            "organization": selected_organization,
                            "region": selected_region,
                            "type_of_document": selected_type_of_document,
                        }

                        if (
                            not selected_region
                            and not selected_organization
                            and not selected_type_of_document
                        ):
                            st.warning(
                                "No filters selected. All documents will be used for the question. Longer processing time expected. Please consider using the filter functions to narrow down the data.",
                                icon=":material/warning:",
                            )
                        filters = knowledge_hub_rag.build_filter(
                            filter_selections=filter_selection
                        )

                        try:
                            docs = knowledge_hub_index.filter_documents(filters=filters)
                        except Exception:
                            st.error(
                                "An error occured while filtering the documents. Please try again. App will reload in a few seconds. If the app does not reload, please refresh the page.",
                                icon=":material/error:",
                            )
                            trigger_ask_k = False
                            time.sleep(3)
                            st.rerun()

                        if not docs:
                            st.error(
                                "The combination of filters you've chosen does not match any documents. Please try another combination of filters. If a filter combination does not return any documents, it means that there are no documents that match the selected filters and therefore no answer can be given.",
                                icon=":material/error:",
                            )
                            trigger_ask_k = False
                            st.stop()
                        else:
                            st.success("Filtering completed.", icon=":material/check:")
                    with st.spinner("Answering question..."):
                        try:
                            result = knowledge_hub_rag.run(
                                query=prompt_k, filter_selections=filter_selection
                            )
                        except Exception:
                            st.error(
                                "An error occured while querying the documents. Please try again. App will reload in a few seconds. If the app does not reload, please refresh the page.",
                                icon=":material/error:",
                            )
                            trigger_ask_k = False
                            time.sleep(3)
                            st.rerun()

                        trigger_ask_k = True
                        st.success(
                            "Answering question completed.", icon=":material/check:"
                        )

                st.markdown(
                    "***≡ Examples***",
                    help="These are example prompts that can be used to ask questions to the model. Click on a prompt to use it as a question. You can also type your own question in the text area above. In general we highly recommend to use the filter functions to narrow down the data.",
                )
                st.caption("Double click to select the prompt")

                for i, prompt_inc in enumerate(example_prompts_k):
                    # with col[i % 4]:
                    if st.button(prompt_inc):
                        if "key" not in st.session_state:
                            st.session_state["prompt_k"] = prompt_inc

        with filtering_k:
            application_col_filter_k, output_col_filter_k = st.columns([1, 1.5])

            with application_col_filter_k:
                st.markdown(
                    """
                    <p class="description"> This filter function allows you to see all documents that match the selected filters. The documents can be accessed via a link \n </p>
                    """,
                    unsafe_allow_html=True,
                )
                if st.button(
                    "Filter documents",
                    key="filter_docuemts_k",
                    type="primary",
                    icon=":material/filter_alt:",
                ):
                    if (
                        not selected_region
                        and not selected_organization
                        and not selected_type_of_document
                    ):
                        st.info(
                            "No filteres selected. All documents will be shown. Longer processing time expected."
                        )

                    with st.spinner("Filtering documents..."):
                        filter = RAGPipeline.build_filter(
                            filter_selections={
                                "organization": selected_organization,
                                "region": selected_region,
                                "type_of_document": selected_type_of_document,
                            }
                        )
                        try:
                            result = knowledge_hub_index.filter_documents(
                                filters=filter
                            )
                        except Exception:
                            st.error(
                                "An error occured while filtering the documents. Please try again.  App will reload in a few seconds. If the app does not reload, please refresh the page.",
                                icon=":material/error:",
                            )
                            trigger_filter_k = False
                            time.sleep(3)
                            st.rerun()

                        retriever_ids = set()
                        result_meta = []

                        for doc in result:
                            retriever_id = doc.meta["retriever_id"]
                            if retriever_id not in retriever_ids:
                                result_meta.append(
                                    {
                                        "organization": doc.meta["organization"],
                                        "title": doc.meta["title"],
                                        "year": doc.meta["year"],
                                        "region": doc.meta["region"],
                                        "keywords": doc.meta["key_words"],
                                        "type_of_document": doc.meta[
                                            "type_of_document"
                                        ],
                                        "type_of_organization": doc.meta[
                                            "type_of_organization"
                                        ],
                                        "href": doc.meta["href"],
                                    }
                                )
                                retriever_ids.add(retriever_id)
                            else:
                                continue

                    result_df = pd.DataFrame(result_meta)
                    if result_df.empty:
                        st.info(
                            "No documents found for the combination of filters you've chosen. All countries are represented at least once in the data. Remove the draft categories to see all documents for the countries selected or try other draft categories and/or rounds"
                        )
                        trigger_filter_k = False
                    else:
                        trigger_filter_k = True

        if trigger_filter_k:
            with output_col_filter_k:
                st.markdown("### Overview of all filtered documents")
                st.dataframe(
                    result_df,
                    hide_index=True,
                    use_container_width=True,
                    column_config={
                        "organization": st.column_config.ListColumn("Organization"),
                        "title": st.column_config.TextColumn("Title"),
                        "year": st.column_config.TextColumn("Year"),
                        "region": st.column_config.ListColumn("Region"),
                        "keywords": st.column_config.ListColumn("Keywords"),
                        "type_of_document": st.column_config.TextColumn(
                            "Type of Document"
                        ),
                        "type_of_organization": st.column_config.TextColumn(
                            "Type of Organization"
                        ),
                        "href": st.column_config.LinkColumn("Link"),
                    },
                )
            trigger_filter_k = False

        if trigger_ask_k:
            with output_col_ask_k:
                if result is None:
                    st.error(
                        "Open AI rate limit exceeded. Please try again in a few seconds."
                    )
                    st.stop()

                reference_data = [
                    (doc.meta["retriever_id"], doc.meta["href"])
                    for doc in result["retriever"]["documents"]
                ]

                references = ["\n"]

                for retriever_id, href in reference_data:
                    references.append(f"-[{retriever_id}]: {href} \n")

                references = list(set(references))

                st.markdown(
                    """<svg xmlns="http://www.w3.org/2000/svg" height="24px" viewBox="0 -960 960 960" width="24px" fill="#077493"><path d="m640-480 80 80v80H520v240l-40 40-40-40v-240H240v-80l80-80v-280h-40v-80h400v80h-40v280Zm-286 80h252l-46-46v-314H400v314l-46 46Zm126 0Z"/></svg> <b>Answer</b>""",
                    unsafe_allow_html=True,
                )

                typewriter(
                    text=result["llm"]["replies"][0],
                    references=references,
                    speed=100,
                    app="knowledge_hub",
                )

                with st.expander("Show more information to the documents"):
                    sorted_docs = sorted(
                        result["retriever"]["documents"],
                        key=lambda x: x.meta["retriever_id"],
                    )
                    current_doc = None
                    markdown_text = ""
                    for doc in sorted_docs:
                        print(current_doc)
                        if doc.meta["retriever_id"] != current_doc:
                            markdown_text += f"- Document: {doc.meta['retriever_id']}\n"
                            markdown_text += "    - Text passages\n"
                            markdown_text += f"        - {doc.content}\n"
                        else:
                            markdown_text += f"        - {doc.content}\n"
                        current_doc = doc.meta["retriever_id"]
                    st.write(markdown_text)

            trigger_ask_k = False

    st.markdown(
        """<hr style="height:2px;border:none;color:#077493;background-color:#077493;" /> """,
        unsafe_allow_html=True,
    )

    about_knowledge_hub()