import re import langdetect from stopwordsiso import stopwords, has_lang from sklearn.feature_extraction.text import TfidfVectorizer def detect_language(text: str) -> str: try: return langdetect.detect(text) except: return "en" # fallback if detection fails def get_stopwords_for_language(lang_code: str): lang_code = lang_code.lower() if has_lang(lang_code): return stopwords(lang_code) # returns a *set* of stopwords else: return set() def extract_top_keywords(text: str, top_n: int = 5) -> list[str]: cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) lang_code = detect_language(cleaned_text) language_stopwords = get_stopwords_for_language(lang_code) # Convert the set to a list here! vectorizer = TfidfVectorizer(stop_words=list(language_stopwords)) tfidf_matrix = vectorizer.fit_transform([cleaned_text]) feature_names = vectorizer.get_feature_names_out() scores = tfidf_matrix.toarray()[0] # Pair up (word, score), then sort descending word_score_pairs = list(zip(feature_names, scores)) word_score_pairs.sort(key=lambda x: x[1], reverse=True) return [w for (w, _) in word_score_pairs[:top_n]]