import re import langdetect from stopwordsiso import stopwords from sklearn.feature_extraction.text import TfidfVectorizer def detect_language(text): """ Detect language using langdetect; returns a language code (e.g. 'en', 'de', 'es'). If detection fails or is uncertain, fallback to 'en'. """ try: return langdetect.detect(text) except: return 'en' # fallback def get_stopwords_for_language(lang_code): """ Retrieve stopwords from stopwordsiso for a given language code. If not available, fallback to empty set. """ lang_code = lang_code.lower() if lang_code in stopwords.langdict: return stopwords.lang(lang_code) else: return set() # fallback to empty set def extract_top_keywords(text, top_n=5): """ Extract top_n keywords from 'text' using a simple TF-IDF approach with language detection and language-specific stopwords. """ # Clean the text (remove punctuation, lower the case, etc.) cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) # Detect language lang_code = detect_language(cleaned_text) # Get the relevant stopwords language_stopwords = get_stopwords_for_language(lang_code) # Initialize TF-IDF with the custom language stop words vectorizer = TfidfVectorizer(stop_words=language_stopwords) # We pass in a list of one "document" to TF-IDF tfidf_matrix = vectorizer.fit_transform([cleaned_text]) feature_names = vectorizer.get_feature_names_out() scores = tfidf_matrix.toarray()[0] # row 0 since we only have one doc # Pair (word, score), then sort descending by score word_score_pairs = list(zip(feature_names, scores)) word_score_pairs.sort(key=lambda x: x[1], reverse=True) # Return just the top_n words top_keywords = [word for (word, score) in word_score_pairs[:top_n]] return top_keywords