import re import langdetect from stopwordsiso import stopwords, has_lang from sklearn.feature_extraction.text import TfidfVectorizer def detect_language(text): try: return langdetect.detect(text) except: return "en" def get_stopwords_for_language(lang_code): lang_code = lang_code.lower() if has_lang(lang_code): return stopwords(lang_code) # returns a set of stopwords return set() def extract_top_keywords(text, top_n=5): # Basic cleanup cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) lang_code = detect_language(cleaned_text) language_stopwords = get_stopwords_for_language(lang_code) # Convert stopwords set to list because TfidfVectorizer needs list/None/'english' stopwords_list = list(language_stopwords) vectorizer = TfidfVectorizer(stop_words=stopwords_list) try: tfidf_matrix = vectorizer.fit_transform([cleaned_text]) except ValueError as e: # If there's nothing left after removing stopwords/punctuation if "empty vocabulary" in str(e).lower(): return [] # Return an empty list -> no keywords else: raise e # Something else went wrong feature_names = vectorizer.get_feature_names_out() scores = tfidf_matrix.toarray()[0] word_score_pairs = list(zip(feature_names, scores)) word_score_pairs.sort(key=lambda x: x[1], reverse=True) return [w for (w, _) in word_score_pairs[:top_n]]