import re import langdetect from stopwordsiso import stopwords, has_lang from sklearn.feature_extraction.text import TfidfVectorizer def detect_language(text: str) -> str: """Detect language using langdetect; returns a language code (e.g. 'en', 'de', 'es').""" try: return langdetect.detect(text) except: # If detection fails or is uncertain, default to English return 'en' def get_stopwords_for_language(lang_code: str): """ Retrieve stopwords from stopwordsiso for a given language code. If not available, fallback to an empty set. """ lang_code = lang_code.lower() if has_lang(lang_code): # has_lang(lang_code) checks if stopwordsiso supports that code return stopwords(lang_code) # returns a set of stopwords else: return set() # fallback if the language is unsupported def extract_top_keywords(text: str, top_n: int = 5) -> list[str]: """ Extract top_n keywords from 'text' using TF-IDF, language detection, and language-specific stopwords. """ # Basic cleanup: remove punctuation, lower the case, etc. cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) # Detect language and get appropriate stopwords lang_code = detect_language(cleaned_text) language_stopwords = get_stopwords_for_language(lang_code) # Build TF-IDF vectorizer with custom stopwords vectorizer = TfidfVectorizer(stop_words=language_stopwords) tfidf_matrix = vectorizer.fit_transform([cleaned_text]) feature_names = vectorizer.get_feature_names_out() scores = tfidf_matrix.toarray()[0] # only 1 row, since we have 1 doc # Pair (word, score) and sort descending by score word_score_pairs = list(zip(feature_names, scores)) word_score_pairs.sort(key=lambda x: x[1], reverse=True) # Return the top N words return [word for (word, _) in word_score_pairs[:top_n]]