GIZ-Project-Search / appStore /tfidf_extraction.py
annikwag's picture
Update appStore/tfidf_extraction.py
daaad57 verified
raw
history blame
1.9 kB
import re
import langdetect
from stopwordsiso import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
def detect_language(text):
"""
Detect language using langdetect; returns a language code (e.g. 'en', 'de', 'es').
If detection fails or is uncertain, fallback to 'en'.
"""
try:
return langdetect.detect(text)
except:
return 'en' # fallback
def get_stopwords_for_language(lang_code):
"""
Retrieve stopwords from stopwordsiso for a given language code.
If not available, fallback to empty set.
"""
lang_code = lang_code.lower()
if lang_code in stopwords.langdict:
return stopwords.lang(lang_code)
else:
return set() # fallback to empty set
def extract_top_keywords(text, top_n=5):
"""
Extract top_n keywords from 'text' using a simple TF-IDF approach with
language detection and language-specific stopwords.
"""
# Clean the text (remove punctuation, lower the case, etc.)
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower())
# Detect language
lang_code = detect_language(cleaned_text)
# Get the relevant stopwords
language_stopwords = get_stopwords_for_language(lang_code)
# Initialize TF-IDF with the custom language stop words
vectorizer = TfidfVectorizer(stop_words=language_stopwords)
# We pass in a list of one "document" to TF-IDF
tfidf_matrix = vectorizer.fit_transform([cleaned_text])
feature_names = vectorizer.get_feature_names_out()
scores = tfidf_matrix.toarray()[0] # row 0 since we only have one doc
# Pair (word, score), then sort descending by score
word_score_pairs = list(zip(feature_names, scores))
word_score_pairs.sort(key=lambda x: x[1], reverse=True)
# Return just the top_n words
top_keywords = [word for (word, score) in word_score_pairs[:top_n]]
return top_keywords