Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import re | |
import langdetect | |
from stopwordsiso import stopwords | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def detect_language(text): | |
""" | |
Detect language using langdetect; returns a language code (e.g. 'en', 'de', 'es'). | |
If detection fails or is uncertain, fallback to 'en'. | |
""" | |
try: | |
return langdetect.detect(text) | |
except: | |
return 'en' # fallback | |
def get_stopwords_for_language(lang_code): | |
""" | |
Retrieve stopwords from stopwordsiso for a given language code. | |
If not available, fallback to empty set. | |
""" | |
lang_code = lang_code.lower() | |
if lang_code in stopwords.langdict: | |
return stopwords.lang(lang_code) | |
else: | |
return set() # fallback to empty set | |
def extract_top_keywords(text, top_n=5): | |
""" | |
Extract top_n keywords from 'text' using a simple TF-IDF approach with | |
language detection and language-specific stopwords. | |
""" | |
# Clean the text (remove punctuation, lower the case, etc.) | |
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) | |
# Detect language | |
lang_code = detect_language(cleaned_text) | |
# Get the relevant stopwords | |
language_stopwords = get_stopwords_for_language(lang_code) | |
# Initialize TF-IDF with the custom language stop words | |
vectorizer = TfidfVectorizer(stop_words=language_stopwords) | |
# We pass in a list of one "document" to TF-IDF | |
tfidf_matrix = vectorizer.fit_transform([cleaned_text]) | |
feature_names = vectorizer.get_feature_names_out() | |
scores = tfidf_matrix.toarray()[0] # row 0 since we only have one doc | |
# Pair (word, score), then sort descending by score | |
word_score_pairs = list(zip(feature_names, scores)) | |
word_score_pairs.sort(key=lambda x: x[1], reverse=True) | |
# Return just the top_n words | |
top_keywords = [word for (word, score) in word_score_pairs[:top_n]] | |
return top_keywords | |