Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import re | |
import langdetect | |
from stopwordsiso import stopwords, has_lang | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def detect_language(text: str) -> str: | |
try: | |
return langdetect.detect(text) | |
except: | |
return "en" # fallback if detection fails | |
def get_stopwords_for_language(lang_code: str): | |
lang_code = lang_code.lower() | |
if has_lang(lang_code): | |
return stopwords(lang_code) # returns a *set* of stopwords | |
else: | |
return set() | |
def extract_top_keywords(text: str, top_n: int = 5) -> list[str]: | |
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) | |
lang_code = detect_language(cleaned_text) | |
language_stopwords = get_stopwords_for_language(lang_code) | |
# Convert the set to a list here! | |
vectorizer = TfidfVectorizer(stop_words=list(language_stopwords)) | |
tfidf_matrix = vectorizer.fit_transform([cleaned_text]) | |
feature_names = vectorizer.get_feature_names_out() | |
scores = tfidf_matrix.toarray()[0] | |
# Pair up (word, score), then sort descending | |
word_score_pairs = list(zip(feature_names, scores)) | |
word_score_pairs.sort(key=lambda x: x[1], reverse=True) | |
return [w for (w, _) in word_score_pairs[:top_n]] | |