GIZ-Project-Search / appStore /tfidf_extraction.py
annikwag's picture
Update appStore/tfidf_extraction.py
3a726ab verified
raw
history blame
1.21 kB
import re
import langdetect
from stopwordsiso import stopwords, has_lang
from sklearn.feature_extraction.text import TfidfVectorizer
def detect_language(text: str) -> str:
try:
return langdetect.detect(text)
except:
return "en" # fallback if detection fails
def get_stopwords_for_language(lang_code: str):
lang_code = lang_code.lower()
if has_lang(lang_code):
return stopwords(lang_code) # returns a *set* of stopwords
else:
return set()
def extract_top_keywords(text: str, top_n: int = 5) -> list[str]:
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower())
lang_code = detect_language(cleaned_text)
language_stopwords = get_stopwords_for_language(lang_code)
# Convert the set to a list here!
vectorizer = TfidfVectorizer(stop_words=list(language_stopwords))
tfidf_matrix = vectorizer.fit_transform([cleaned_text])
feature_names = vectorizer.get_feature_names_out()
scores = tfidf_matrix.toarray()[0]
# Pair up (word, score), then sort descending
word_score_pairs = list(zip(feature_names, scores))
word_score_pairs.sort(key=lambda x: x[1], reverse=True)
return [w for (w, _) in word_score_pairs[:top_n]]