ppsingh's picture
Update app.py
8bae800 verified
raw
history blame
2.72 kB
import streamlit as st
import pandas as pd
from torch import cuda
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from appStore.prep_data import process_giz_worldwide
from appStore.prep_utils import create_documents
from appStore.embed import hybrid_embed_chunks, get_local_qdrant
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("SEARCH IATI Database")
var=st.text_input("enter keyword")
def get_context(vectorstore,query):
# create metadata filter
# getting context
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.5,
"k": 10,})
# # re-ranking the retrieved results
# model = HuggingFaceCrossEncoder(model_name=model_config.get('ranker','MODEL'))
# compressor = CrossEncoderReranker(model=model, top_n=int(model_config.get('ranker','TOP_K')))
# compression_retriever = ContextualCompressionRetriever(
# base_compressor=compressor, base_retriever=retriever
# )
context_retrieved = retriever.invoke(query)
print(f"retrieved paragraphs:{len(context_retrieved)}")
return context_retrieved
# first we create the chunks for iati documents
chunks = process_giz_worldwide()
for i in range(5):
print(i,"\n",chunks.loc[i,'chunks'])
temp_df = chunks[:5]
temp_doc = create_documents(temp_df,'chunks')
for i in range(5):
print(i,"\n",temp_doc[i])
hybrid_embed_chunks(docs= temp_doc, collection_name = "giz_worldwide")
print("emedding done")
# once the chunks are done, we perform hybrid emebddings
#embed_chunks(chunks)
#vectorstores = get_local_qdrant('giz_worldwide')
#vectorstore = vectorstores['giz_worldwide']
button=st.button("search")
#found_docs = vectorstore.similarity_search(var)
#print(found_docs)
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
if button:
st.write(f"Found {len(results)} results for query:{var}")
for i in results:
st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
st.write(i.page_content)
st.divider()