annikwag's picture
Update app.py
8225c93 verified
raw
history blame
10.3 kB
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database")
var = st.text_input("Enter Search Query")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)
################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())
# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
# ADD: only add codes of length 2
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
# Create a mapping of {CountryName -> ISO2Code}
# so you can display the name in the selectbox but store the 2-digit code
country_name_to_code = {}
for code in country_set:
name = get_country_name(code, region_df)
country_name_to_code[name] = code
return country_name_to_code
# Get country name mapping
client = get_client()
country_name_mapping = get_country_name_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns
col1, col2, col3 = st.columns([1, 1, 4])
with col1:
country_filter = st.selectbox("Country", ["All/Not allocated"] + unique_country_names) # Display country names
with col2:
current_year = datetime.now().year
default_start_year = current_year - 5 # Default to 5 years ago
end_year_range = st.slider(
"Project End Year",
min_value=2010,
max_value=2030,
value=(default_start_year, current_year)
)
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
button = st.button("Search")
if button:
results = hybrid_search(client, var, collection_name)
def filter_results(results, country_filter, end_year_range):
filtered = []
for res in results:
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
end_year = float(metadata.get('end_year', 0))
# Process countries string to a list
try:
country_list = json.loads(countries.replace("'", '"'))
# Normalize to uppercase and filter only 2-digit ISO codes
country_list = [code.upper() for code in country_list if len(code) == 2]
except json.JSONDecodeError:
country_list = []
# Translate selected country name back to 2-digit ISO code
selected_iso_code = country_name_mapping.get(country_filter, None)
# Apply country and year filters
if (country_filter == "All/Not allocated" or selected_iso_code in country_list) and (end_year_range[0] <= end_year <= end_year_range[1]):
filtered.append(res)
return filtered
# Check user preference for exact matches
if show_exact_matches:
st.write(f"Showing **Top 10 Lexical Search results** for query: {var}")
lexical_results = results[1] # Lexical results are in index 1
filtered_lexical_results = filter_results(lexical_results, country_filter, end_year_range)
for res in filtered_lexical_results[:10]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
# ------- Display first 4 lines + expander -------
full_text = res.payload['page_content']
# Split the text by whitespace
words = full_text.split()
# For instance, show only the first 40 words
preview_word_count = 120
# Create the short preview and the remainder
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
# Always display the preview_text
st.write(preview_text + ("..." if remainder_text else ""))
# ------ Extract top 5 keywords and display ------
top_keywords = extract_top_keywords(full_text, top_n=5)
# Join them with " 路 " and make them italic
if top_keywords:
st.write("")
st.markdown(f"_{' 路 '.join(top_keywords)}_") # e.g. _keyword1 路 keyword2 路 keyword3_
# ------- Additional info below the text -------
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
# Process countries
try:
country_list = json.loads(countries.replace("'", '"'))
# Normalize to uppercase and map to country names
country_names = [get_country_name(code.upper(), region_df) for code in country_list if len(code) == 2]
country_names = country_names if country_names else country_list # Fallback if no names found
except json.JSONDecodeError:
country_names = countries
# Format start and end year
start_year = f"{int(round(float(start_year)))}" if start_year else "Unknown"
end_year = f"{int(round(float(end_year)))}" if end_year else "Unknown"
# Generate additional text with Markdown for bold formatting
additional_text = f"**{', '.join(country_names)}**, commissioned by **{client}**, **{start_year}-{end_year}**"
st.markdown(additional_text)
st.divider()
else:
st.write(f"Showing **Top 10 Semantic Search results** for query: {var}")
semantic_results = results[0] # Semantic results are in index 0
filtered_semantic_results = filter_results(semantic_results, country_filter, end_year_range)
for res in filtered_semantic_results[:10]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
# ------- Display first 4 lines + expander -------
full_text = res.payload['page_content']
# Split the text by whitespace
words = full_text.split()
# For instance, show only the first 40 words
preview_word_count = 40
# Create the short preview and the remainder
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
# Always display the preview_text
st.write(preview_text + ("..." if remainder_text else ""))
# ------ Extract top 5 keywords and display ------
top_keywords = extract_top_keywords(full_text, top_n=5)
# Join them with " 路 " and make them italic
if top_keywords:
st.write("") # line break
st.markdown(f"_{' 路 '.join(top_keywords)}_")
# Additional text below the content
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
# Process countries
try:
country_list = json.loads(countries.replace("'", '"'))
country_names = [get_country_name(code.upper(), region_df) for code in country_list if len(code) == 2]
country_names = country_names if country_names else country_list
except json.JSONDecodeError:
country_names = countries
# Format start and end year
start_year = f"{int(round(float(start_year)))}" if start_year else "Unknown"
end_year = f"{int(round(float(end_year)))}" if end_year else "Unknown"
# Generate additional text with Markdown for bold formatting
additional_text = f"**{', '.join(country_names)}**, commissioned by **{client}**, **{start_year}-{end_year}**"
st.markdown(additional_text)
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider()