Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,037 Bytes
e44062d 71dcf5a e44062d cb75685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import pandas as pd
path_to_data = "./docStore/"
from appStore.prep_utils import create_chunks
def process_iati():
"""
this will read the iati files and create the chunks
"""
orgas_df = pd.read_csv(f"{path_to_data}iati_files/project_orgas.csv")
region_df = pd.read_csv(f"{path_to_data}iati_files/project_region.csv")
sector_df = pd.read_csv(f"{path_to_data}iati_files/project_sector.csv")
status_df = pd.read_csv(f"{path_to_data}iati_files/project_status.csv")
texts_df = pd.read_csv(f"{path_to_data}iati_files/project_texts.csv")
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
projects_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True)
projects_df.drop(columns= ['orga_abbreviation', 'client',
'orga_full_name', 'country',
'country_flag', 'crs_5_code', 'crs_3_code','country_code_list',
'sgd_pred_code','crs_5_name', 'crs_3_name', 'sgd_pred_str'], inplace=True)
#print(projects_df.columns)
projects_df['text_size'] = projects_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1)
projects_df['chunks'] = projects_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1)
projects_df = projects_df.explode(column=['chunks'], ignore_index=True)
projects_df['source'] = 'IATI'
projects_df.rename(columns = {'iati_id':'id','iati_orga_id':'org'}, inplace=True)
return projects_df
def process_giz_worldwide():
"""
this will read the giz_worldwide files and create the chunks
"""
giz_df = pd.read_json(f'{path_to_data}giz_worldwide/data_giz_website.json')
giz_df = giz_df.rename(columns={'content':'project_description'})
giz_df['text_size'] = giz_df.apply(lambda x: len((x['project_name'] + x['project_description']).split()), axis=1)
giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['project_name'] + x['project_description']),axis=1)
print("initial df length:",len(giz_df))
giz_df = giz_df.explode(column=['chunks'], ignore_index=True)
print("new df length:",len(giz_df))
print(giz_df.columns)
#giz_df.drop(columns = ['filename', 'url', 'name', 'mail',
# 'language', 'start_year', 'end_year','poli_trager'], inplace=True)
giz_df['source'] = 'GIZ_WORLDWIDE'
return giz_df
def remove_duplicates(results_list):
"""
Return a new list of results with duplicates removed,
based on 'url' in metadata.
"""
unique_results = []
seen_urls = set()
for r in results_list:
# Safely get the URL from metadata
url = r.payload['metadata'].get('url', None)
if url not in seen_urls:
seen_urls.add(url)
unique_results.append(r)
return unique_results
|