import pandas as pd import numpy as np from scipy.sparse import csr_matrix, coo_matrix import streamlit as st # multi_project_matching def calc_matches(filtered_df, project_df, similarity_matrix, top_x): st.write(filtered_df.shape) st.write(project_df.shape) st.write(similarity_matrix.shape) # Ensure the matrix is in a suitable format for manipulation if not isinstance(similarity_matrix, csr_matrix): similarity_matrix = csr_matrix(similarity_matrix) filtered_indices = filtered_df.index.to_list() project_indices = project_df.index.to_list() st.write(filtered_indices[:100]) st.write(project_indices[:100]) """ p1_df = filtered_df.loc[top_col_indices].copy() p1_df['similarity'] = top_values p2_df = project_df.loc[top_row_indices].copy() p2_df['similarity'] = top_values print("finished calc matches") return p1_df, p2_df """