import pandas as pd import numpy as np from scipy.sparse import csr_matrix, coo_matrix import streamlit as st # multi_project_matching def calc_matches(filtered_df, project_df, similarity_matrix, top_x): st.write(filtered_df.shape) st.write(project_df.shape) st.write(similarity_matrix.shape) # Ensure the matrix is in a suitable format for manipulation if not isinstance(similarity_matrix, csr_matrix): similarity_matrix = csr_matrix(similarity_matrix) # Get indices from dataframes filtered_df_indices = filtered_df.index.to_list() project_df_indices = project_df.index.to_list() # Create mapping dictionaries filtered_df_index_map = {i: index for i, index in enumerate(filtered_df_indices)} st.write(filtered_df_index_map) project_df_index_map = {i: index for i, index in enumerate(project_df_indices)} # Select submatrix based on indices from both dataframes match_matrix = similarity_matrix[filtered_df_indices, :][:, project_df_indices] coo = match_matrix.tocoo() data = coo.data row_indices = coo.row col_indices = coo.col top_n = 15 if len(data) < top_n: top_n = len(data) top_n_indices = np.argsort(data)[-top_n:][::-1] top_n_percentages = data[top_n_indices] top_n_row_indices = row_indices[top_n_indices] top_n_col_indices = col_indices[top_n_indices] original_row_indices = filtered_df_indices[top_n_row_indices] original_col_indices = project_df_indices[top_n_col_indices] st.write(match_matrix.shape) # Get the linear indices of the top 'top_x' values # (flattened index to handle the sparse matrix more effectively) #linear_indices = np.argsort(match_matrix.data)[-top_x:] #if len(linear_indices) < top_x: # top_x = len(linear_indices) # Convert flat indices to 2D indices using the shape of the submatrix #top_indices = np.unravel_index(linear_indices, match_matrix.shape) # Get the corresponding similarity values #top_values = match_matrix.data[linear_indices] #flat_data = match_matrix.data # Get the indices that would sort the data array in descending order #sorted_indices = np.argsort(flat_data)[::-1] # Take the first k indices to get the top k maximum values #top_indices = sorted_indices[:top_x] #top_row_indices = [] #top_col_indices = [] #for idx in top_indices: # row, col = np.unravel_index(idx, match_matrix.shape) # top_row_indices.append(row) # top_col_indices.append(col) #st.write(top_col_indices) # Convert flat indices to 2D row and column indices #row_indices, col_indices = match_matrix.nonzero() #row_indices = row_indices[top_indices] #col_indices = col_indices[top_indices] # Get the values corresponding to the top k indices #top_values = flat_data[top_indices] # Get the values corresponding to the top k indices #top_values = match_matrix[row_indices, col_indices] #top_filtered_df_indices = [filtered_df_index_map[i] for i in top_col_indices] #top_project_df_indices = [project_df_index_map[i] for i in top_row_indices] #st.write(top_filtered_df_indices) # Create resulting dataframes with top matches and their similarity scores p1_df = filtered_df.loc[top_col_indices].copy() p1_df['similarity'] = top_values p2_df = project_df.loc[top_row_indices].copy() p2_df['similarity'] = top_values print("finished calc matches") return p1_df, p2_df