Jan Mühlnikel
commited on
Commit
·
fd7cbe7
1
Parent(s):
a2d83b8
move all to one app page
Browse files- __pycache__/similarity.cpython-310.pyc +0 -0
- __pycache__/similarity_page.cpython-310.pyc +0 -0
- home.py +0 -4
- sdg.py +0 -0
- sector.py +0 -225
- similarity.py +0 -112
- utils/__pycache__/crs_table.cpython-310.pyc +0 -0
- utils/__pycache__/filter_modules.cpython-310.pyc +0 -0
- utils/__pycache__/navbar.cpython-310.pyc +0 -0
- utils/__pycache__/sdg_table.cpython-310.pyc +0 -0
- utils/__pycache__/semantic_search.cpython-310.pyc +0 -0
- utils/__pycache__/similarity_table.cpython-310.pyc +0 -0
- utils/crs_table.py +0 -49
- utils/filter_modules.py +0 -21
- utils/navbar.py +0 -50
- utils/sdg_table.py +0 -43
- utils/semantic_search.py +0 -19
- utils/similarity_table.py +0 -53
__pycache__/similarity.cpython-310.pyc
CHANGED
Binary files a/__pycache__/similarity.cpython-310.pyc and b/__pycache__/similarity.cpython-310.pyc differ
|
|
__pycache__/similarity_page.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
home.py
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def show_page():
|
4 |
-
st.write("home")
|
|
|
|
|
|
|
|
|
|
sdg.py
DELETED
File without changes
|
sector.py
DELETED
@@ -1,225 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Page to analyse the link between crs codes, countries and organizations
|
3 |
-
"""
|
4 |
-
|
5 |
-
################
|
6 |
-
# DEPENDENCIES #
|
7 |
-
################
|
8 |
-
import streamlit as st
|
9 |
-
import pandas as pd
|
10 |
-
import utils.crs_table as crs_table
|
11 |
-
import utils.sdg_table as sdg_table
|
12 |
-
import utils.filter_modules as filter_modules
|
13 |
-
"""
|
14 |
-
from importlib.machinery import SourceFileLoader
|
15 |
-
crs_overlap = SourceFileLoader("crs_overlap", "data/models/crs_overlap.py").load_module()
|
16 |
-
sdg_overlap = SourceFileLoader("sdg_overlap", "data/models/sdg_overlap.py").load_module()
|
17 |
-
CONSTANTS = SourceFileLoader("CONSTANTS", "config/CONSTANTS.py").load_module()
|
18 |
-
|
19 |
-
# CHACHE DATA
|
20 |
-
# FETCH NEEDED DATA AND STORE IN CHACHE MEMORY TO SAVE LOADING TIME
|
21 |
-
@st.cache_data
|
22 |
-
def getCRS3():
|
23 |
-
# Read in CRS3 CODELISTS
|
24 |
-
crs3_df = pd.read_csv('app/src/codelists/crs3_codes.csv')
|
25 |
-
CRS3_CODES = crs3_df['code'].tolist()
|
26 |
-
CRS3_NAME = crs3_df['name'].tolist()
|
27 |
-
CRS3_MERGED = {f"{name} - {code}": code for name, code in zip(CRS3_NAME, CRS3_CODES)}
|
28 |
-
|
29 |
-
return CRS3_MERGED
|
30 |
-
|
31 |
-
@st.cache_data
|
32 |
-
def getCRS5():
|
33 |
-
# Read in CRS3 CODELISTS
|
34 |
-
crs5_df = pd.read_csv('app/src/codelists/crs5_codes.csv')
|
35 |
-
CRS5_CODES = crs5_df['code'].tolist()
|
36 |
-
CRS5_NAME = crs5_df['name'].tolist()
|
37 |
-
CRS5_MERGED = {code: [f"{name} - {code}"] for name, code in zip(CRS5_NAME, CRS5_CODES)}
|
38 |
-
|
39 |
-
return CRS5_MERGED
|
40 |
-
|
41 |
-
@st.cache_data
|
42 |
-
def getSDG():
|
43 |
-
# Read in SDG CODELISTS
|
44 |
-
sdg_df = pd.read_csv('app/src/codelists/sdg_goals.csv')
|
45 |
-
SDG_NAMES = sdg_df['name'].tolist()
|
46 |
-
|
47 |
-
return SDG_NAMES
|
48 |
-
|
49 |
-
@st.cache_data
|
50 |
-
def getCountry():
|
51 |
-
# Read in countries from codelist
|
52 |
-
country_df = pd.read_csv('app/src/codelists/country_codes_ISO3166-1alpha-2.csv')
|
53 |
-
COUNTRY_CODES = country_df['Alpha-2 code'].tolist()
|
54 |
-
COUNTRY_NAMES = country_df['Country'].tolist()
|
55 |
-
|
56 |
-
return country_df, COUNTRY_CODES, COUNTRY_NAMES
|
57 |
-
|
58 |
-
CRS3_MERGED = getCRS3()
|
59 |
-
CRS5_MERGED = getCRS5()
|
60 |
-
SDG_NAMES = getSDG()
|
61 |
-
country_df, COUNTRY_CODES, COUNTRY_NAMES = getCountry()
|
62 |
-
|
63 |
-
# SPECIAL SELECTIONS
|
64 |
-
## COUNTRY
|
65 |
-
SPECIAL_COUNTRY_SLECTIONS = ["All"]
|
66 |
-
SHOW_ALL_COUNTRIES = False # If all countries should be showed in matching
|
67 |
-
|
68 |
-
## ORGANIZATION
|
69 |
-
SPECIAL_ORGA_SLECTIONS = ["All"]
|
70 |
-
SHOW_ALL_ORGAS = False
|
71 |
-
"""
|
72 |
-
########
|
73 |
-
# PAGE #
|
74 |
-
########
|
75 |
-
def show_page():
|
76 |
-
|
77 |
-
"""
|
78 |
-
def show_crs():
|
79 |
-
# SESSION STATES
|
80 |
-
st.session_state.crs5_option_disabled = True
|
81 |
-
|
82 |
-
# SELECTION FIELDS
|
83 |
-
col1, col2 = st.columns([1, 1])
|
84 |
-
with col1:
|
85 |
-
#####################
|
86 |
-
# CRS 3 CODE SELECT #
|
87 |
-
#####################
|
88 |
-
crs3_option = st.multiselect(
|
89 |
-
'CRS 3',
|
90 |
-
CRS3_MERGED,
|
91 |
-
placeholder="Select"
|
92 |
-
)
|
93 |
-
|
94 |
-
#####################
|
95 |
-
# CRS 5 CODE SELECT #
|
96 |
-
#####################
|
97 |
-
# Only enable crs5 select field when crs3 code is selected
|
98 |
-
if crs3_option != []:
|
99 |
-
st.session_state.crs5_option_disabled = False
|
100 |
-
|
101 |
-
# define list of crs5 codes dependend on crs3 codes
|
102 |
-
crs5_list = [txt[0].replace('"', "") for crs3_item in crs3_option for code, txt in CRS5_MERGED.items() if str(code)[:3] == str(crs3_item)[-3:]]
|
103 |
-
|
104 |
-
# crs5 select field
|
105 |
-
crs5_option = st.multiselect(
|
106 |
-
'CRS 5',
|
107 |
-
crs5_list,
|
108 |
-
placeholder="Select",
|
109 |
-
disabled=st.session_state.crs5_option_disabled
|
110 |
-
)
|
111 |
-
|
112 |
-
with col2:
|
113 |
-
# COUNTRY SELECTION
|
114 |
-
country_option = filter_modules.country_option(SPECIAL_COUNTRY_SLECTIONS, COUNTRY_NAMES)
|
115 |
-
|
116 |
-
# ORGA SELECTION
|
117 |
-
orga_option = filter_modules.orga_option(SPECIAL_ORGA_SLECTIONS, CONSTANTS.ORGA_SEARCH)
|
118 |
-
|
119 |
-
################
|
120 |
-
# SHOW RESULTS #
|
121 |
-
################
|
122 |
-
# Extract Orgas from multiselect
|
123 |
-
if "All" in orga_option:
|
124 |
-
SHOW_ALL_ORGAS = True
|
125 |
-
selected_orgas = []
|
126 |
-
else:
|
127 |
-
SHOW_ALL_ORGAS = False
|
128 |
-
selected_orgas = [str(o).replace(")", "").lower().split("(")[1] for o in orga_option]
|
129 |
-
|
130 |
-
if country_option != []:
|
131 |
-
# all selection
|
132 |
-
if "All" in country_option:
|
133 |
-
SHOW_ALL_COUNTRIES = True
|
134 |
-
country_option.remove("All")
|
135 |
-
else:
|
136 |
-
SHOW_ALL_COUNTRIES = False
|
137 |
-
|
138 |
-
if crs3_option != []:
|
139 |
-
# CRS 3 codes from option
|
140 |
-
crs3_list = [i[-3:] for i in crs3_option]
|
141 |
-
|
142 |
-
# get country codes from multiselect
|
143 |
-
country_names = [str(c) for c in country_option]
|
144 |
-
country_codes = [
|
145 |
-
country_df[country_df['Country'] == c]['Alpha-2 code'].values[0].replace('"', "").strip(" ")
|
146 |
-
for c in country_names
|
147 |
-
]
|
148 |
-
|
149 |
-
result_df = crs_overlap.calc_crs3(crs3_list, country_codes, selected_orgas, SHOW_ALL_COUNTRIES, SHOW_ALL_ORGAS)
|
150 |
-
|
151 |
-
if crs5_option != []:
|
152 |
-
# CRS 5 codes from option
|
153 |
-
crs5_list = [i[-5:] for i in crs5_option]
|
154 |
-
result_df = crs_overlap.calc_crs5(crs5_list, country_codes, selected_orgas, SHOW_ALL_COUNTRIES, SHOW_ALL_ORGAS)
|
155 |
-
|
156 |
-
# TABLE FOR CRS OVERLAP
|
157 |
-
crs_table.show_table(result_df)
|
158 |
-
|
159 |
-
def show_sdg():
|
160 |
-
# SELECTION
|
161 |
-
col1, col2 = st.columns([1, 1])
|
162 |
-
with col1:
|
163 |
-
# CRS3 CODE SELECT
|
164 |
-
sdg_option = st.selectbox(
|
165 |
-
label = 'SDG',
|
166 |
-
index = None,
|
167 |
-
placeholder = "Select SDG",
|
168 |
-
options = SDG_NAMES,
|
169 |
-
)
|
170 |
-
|
171 |
-
with col2:
|
172 |
-
# COUNTRY SELECTION
|
173 |
-
country_option = filter_modules.country_option(SPECIAL_COUNTRY_SLECTIONS, COUNTRY_NAMES)
|
174 |
-
|
175 |
-
# ORGA SELECTION
|
176 |
-
orga_option = filter_modules.orga_option(SPECIAL_ORGA_SLECTIONS, CONSTANTS.ORGA_SEARCH)
|
177 |
-
|
178 |
-
|
179 |
-
# SHOW RESULTS
|
180 |
-
if sdg_option != None:
|
181 |
-
sdg_int = int(sdg_option.split(" ")[0].replace(".", ""))
|
182 |
-
# Extract Orgas from multiselect
|
183 |
-
if "All" in orga_option:
|
184 |
-
SHOW_ALL_ORGAS = True
|
185 |
-
selected_orgas = []
|
186 |
-
else:
|
187 |
-
SHOW_ALL_ORGAS = False
|
188 |
-
selected_orgas = [str(o).replace(")", "").lower().split("(")[1] for o in orga_option]
|
189 |
-
|
190 |
-
if country_option != []:
|
191 |
-
# all selection
|
192 |
-
if "All" in country_option:
|
193 |
-
SHOW_ALL_COUNTRIES = True
|
194 |
-
country_option.remove("All")
|
195 |
-
else:
|
196 |
-
SHOW_ALL_COUNTRIES = False
|
197 |
-
|
198 |
-
country_names = [str(c) for c in country_option]
|
199 |
-
country_codes = [
|
200 |
-
country_df[country_df['Country'] == c]['Alpha-2 code'].values[0].replace('"', "").strip(" ")
|
201 |
-
for c in country_names
|
202 |
-
]
|
203 |
-
|
204 |
-
result_df = sdg_overlap.calc_crs3(sdg_int, country_codes, selected_orgas, SHOW_ALL_COUNTRIES, SHOW_ALL_ORGAS)
|
205 |
-
|
206 |
-
# TABLE FOR SDG OVERLAP
|
207 |
-
sdg_table.show_table(result_df)
|
208 |
-
|
209 |
-
# SELECT IF CRS or SDG Match
|
210 |
-
match_option = st.selectbox(
|
211 |
-
label = 'Matching Method',
|
212 |
-
index = 0,
|
213 |
-
placeholder = "Select",
|
214 |
-
options = ["CRS", "SDG"],
|
215 |
-
)
|
216 |
-
|
217 |
-
st.write("------------------")
|
218 |
-
|
219 |
-
if match_option == "CRS":
|
220 |
-
show_crs()
|
221 |
-
elif match_option == "SDG":
|
222 |
-
show_sdg()
|
223 |
-
|
224 |
-
"""
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
similarity.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Page for similarities
|
3 |
-
"""
|
4 |
-
|
5 |
-
################
|
6 |
-
# DEPENDENCIES #
|
7 |
-
################
|
8 |
-
import streamlit as st
|
9 |
-
import pandas as pd
|
10 |
-
from scipy.sparse import load_npz
|
11 |
-
import pickle
|
12 |
-
import faiss
|
13 |
-
from sentence_transformers import SentenceTransformer
|
14 |
-
import utils.similarity_table as similarity_table
|
15 |
-
import utils.semantic_search as semantic_search
|
16 |
-
import psutil
|
17 |
-
import os
|
18 |
-
|
19 |
-
def get_process_memory():
|
20 |
-
process = psutil.Process(os.getpid())
|
21 |
-
return process.memory_info().rss / (1024 * 1024)
|
22 |
-
|
23 |
-
# Catch DATA
|
24 |
-
# Load Similarity matrix
|
25 |
-
@st.cache_data
|
26 |
-
def load_sim_matrix():
|
27 |
-
loaded_matrix = load_npz("src/similarities.npz")
|
28 |
-
dense_matrix = loaded_matrix.toarray()
|
29 |
-
|
30 |
-
return dense_matrix
|
31 |
-
|
32 |
-
@st.cache_data
|
33 |
-
def load_projects():
|
34 |
-
orgas_df = pd.read_csv("src/projects/project_orgas.csv")
|
35 |
-
region_df = pd.read_csv("src/projects/project_region.csv")
|
36 |
-
sector_df = pd.read_csv("src/projects/project_sector.csv")
|
37 |
-
status_df = pd.read_csv("src/projects/project_status.csv")
|
38 |
-
texts_df = pd.read_csv("src/projects/project_texts.csv")
|
39 |
-
|
40 |
-
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
|
41 |
-
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
|
42 |
-
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
|
43 |
-
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
|
44 |
-
|
45 |
-
return projects_df
|
46 |
-
|
47 |
-
@st.cache_resource
|
48 |
-
def load_model():
|
49 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
50 |
-
return model
|
51 |
-
|
52 |
-
# LOAD EMBEDDINGS
|
53 |
-
@st.cache_data
|
54 |
-
def load_embeddings_and_index():
|
55 |
-
# Load embeddings
|
56 |
-
with open("src/embeddings.pkl", "rb") as fIn:
|
57 |
-
stored_data = pickle.load(fIn)
|
58 |
-
sentences = stored_data["sentences"]
|
59 |
-
embeddings = stored_data["embeddings"]
|
60 |
-
|
61 |
-
# Load or create FAISS index
|
62 |
-
dimension = embeddings.shape[1]
|
63 |
-
faiss_index = faiss.IndexFlatL2(dimension)
|
64 |
-
faiss_index.add(embeddings)
|
65 |
-
|
66 |
-
return sentences, embeddings, faiss_index
|
67 |
-
|
68 |
-
# LOAD DATA
|
69 |
-
sim_matrix = load_sim_matrix()
|
70 |
-
projects_df = load_projects()
|
71 |
-
model = load_model()
|
72 |
-
sentences, embeddings, faiss_index = load_embeddings_and_index()
|
73 |
-
|
74 |
-
def show_page():
|
75 |
-
st.write(f"Current RAM usage of this app: {get_process_memory():.2f} MB")
|
76 |
-
st.write("Similarities")
|
77 |
-
|
78 |
-
semantic_search.show_search(model, faiss_index, sentences)
|
79 |
-
|
80 |
-
df_subset = projects_df.head(10)
|
81 |
-
selected_index = st.selectbox('Select an entry', df_subset.index, format_func=lambda x: df_subset.loc[x, 'iati_id'])
|
82 |
-
|
83 |
-
st.write(selected_index)
|
84 |
-
|
85 |
-
# add index and similarity together
|
86 |
-
indecies = range(0, len(sim_matrix))
|
87 |
-
similarities = sim_matrix[selected_index]
|
88 |
-
zipped_sims = list(zip(indecies, similarities))
|
89 |
-
|
90 |
-
# remove all 0 similarities
|
91 |
-
filtered_sims = [(index, similarity) for index, similarity in zipped_sims if similarity != 0]
|
92 |
-
|
93 |
-
# Select and sort top 20 most similar projects
|
94 |
-
sorted_sims = sorted(filtered_sims, key=lambda x: x[1], reverse=True)
|
95 |
-
top_20_sims = sorted_sims[:20]
|
96 |
-
|
97 |
-
# create result data frame
|
98 |
-
index_list = [tup[0] for tup in top_20_sims]
|
99 |
-
print(index_list)
|
100 |
-
result_df = projects_df.iloc[index_list]
|
101 |
-
print(len(result_df))
|
102 |
-
|
103 |
-
print(len(result_df))
|
104 |
-
# add other colums to result df
|
105 |
-
|
106 |
-
similarity_list = [tup[1] for tup in top_20_sims]
|
107 |
-
result_df["similarity"] = similarity_list
|
108 |
-
|
109 |
-
similarity_table.show_table(result_df, similarity_list)
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/__pycache__/crs_table.cpython-310.pyc
DELETED
Binary file (1.21 kB)
|
|
utils/__pycache__/filter_modules.cpython-310.pyc
DELETED
Binary file (997 Bytes)
|
|
utils/__pycache__/navbar.cpython-310.pyc
DELETED
Binary file (1.14 kB)
|
|
utils/__pycache__/sdg_table.cpython-310.pyc
DELETED
Binary file (1.19 kB)
|
|
utils/__pycache__/semantic_search.cpython-310.pyc
DELETED
Binary file (825 Bytes)
|
|
utils/__pycache__/similarity_table.cpython-310.pyc
DELETED
Binary file (1.41 kB)
|
|
utils/crs_table.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def show_table(data_df):
|
4 |
-
st.write("------------------")
|
5 |
-
|
6 |
-
st.dataframe(
|
7 |
-
data_df[["title_main", "orga_abbreviation", "client", "description_main", "country", "crs_3_code", "crs_5_code"]],
|
8 |
-
use_container_width = True,
|
9 |
-
height = 35 + 35 * len(data_df),
|
10 |
-
column_config={
|
11 |
-
"orga_abbreviation": st.column_config.TextColumn(
|
12 |
-
"Organization",
|
13 |
-
help="If description not in English, description in other language provided",
|
14 |
-
disabled=True
|
15 |
-
),
|
16 |
-
"client": st.column_config.TextColumn(
|
17 |
-
"Client",
|
18 |
-
help="Client organization of customer",
|
19 |
-
disabled=True
|
20 |
-
),
|
21 |
-
"title_main": st.column_config.TextColumn(
|
22 |
-
"Title",
|
23 |
-
help="If title not in English, title in other language provided",
|
24 |
-
disabled=True
|
25 |
-
),
|
26 |
-
"description_main": st.column_config.TextColumn(
|
27 |
-
"Description",
|
28 |
-
help="If description not in English, description in other language provided",
|
29 |
-
disabled=True
|
30 |
-
),
|
31 |
-
"country": st.column_config.TextColumn(
|
32 |
-
"Country",
|
33 |
-
help="Country of project",
|
34 |
-
disabled=True
|
35 |
-
),
|
36 |
-
"crs_3_code": st.column_config.TextColumn(
|
37 |
-
"CRS 3",
|
38 |
-
help="CRS 3",
|
39 |
-
disabled=True
|
40 |
-
),
|
41 |
-
"crs_5_code": st.column_config.TextColumn(
|
42 |
-
"CRS 5",
|
43 |
-
help="CRS 5",
|
44 |
-
disabled=True
|
45 |
-
),
|
46 |
-
|
47 |
-
},
|
48 |
-
hide_index=True,
|
49 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/filter_modules.py
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import streamlit as st
|
3 |
-
|
4 |
-
def country_option(special_cases, country_names):
|
5 |
-
country_option = st.multiselect(
|
6 |
-
'Country / Countries',
|
7 |
-
special_cases + country_names,
|
8 |
-
placeholder="Select"
|
9 |
-
)
|
10 |
-
|
11 |
-
return country_option
|
12 |
-
|
13 |
-
def orga_option(special_cases, orga_names):
|
14 |
-
orga_list = special_cases + [f"{v[0]} ({k})" for k, v in orga_names.items()]
|
15 |
-
orga_option = st.multiselect(
|
16 |
-
'Development Bank / Organization',
|
17 |
-
orga_list,
|
18 |
-
placeholder="Select"
|
19 |
-
)
|
20 |
-
|
21 |
-
return orga_option
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/navbar.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_option_menu import option_menu # https://github.com/victoryhb/streamlit-option-menu
|
3 |
-
|
4 |
-
# giz-dsc colors
|
5 |
-
# orange: #e5b50d
|
6 |
-
# green: #48d47b
|
7 |
-
# blue: #0da2dc
|
8 |
-
# grey: #dadada
|
9 |
-
|
10 |
-
# giz colors https://www.giz.de/cdc/en/html/59638.html
|
11 |
-
# red: #c80f0f
|
12 |
-
# grey: #6f6f6f
|
13 |
-
# light_grey: #b2b2b2
|
14 |
-
# light_red: #eba1a3
|
15 |
-
|
16 |
-
def show_navbar():
|
17 |
-
st.markdown("<h1 style='color: red;'>THIS APP IS WORK IN PROGRESS ...</h1>", unsafe_allow_html=True)
|
18 |
-
|
19 |
-
navbar = option_menu(None, ["Home", "Sector Matches", 'Similarity Matches'],
|
20 |
-
icons=['house', 'list-task', "list-task", 'list-task'],
|
21 |
-
menu_icon="cast", default_index=0, orientation="horizontal",
|
22 |
-
styles={
|
23 |
-
"container": {
|
24 |
-
"padding": "0!important",
|
25 |
-
"background-color": "#F0F0F0"
|
26 |
-
},
|
27 |
-
"icon": {
|
28 |
-
"color": "#c80f0f",
|
29 |
-
"font-size": "25px"
|
30 |
-
},
|
31 |
-
"nav-link": {
|
32 |
-
"font-size": "25px",
|
33 |
-
"text-align": "left",
|
34 |
-
"margin":"0px",
|
35 |
-
"--hover-color": "#b2b2b2"
|
36 |
-
},
|
37 |
-
"nav-link-selected": {
|
38 |
-
"background-color": "#F0F0F0"
|
39 |
-
},
|
40 |
-
"nav-link-text": {
|
41 |
-
"color": "#333333"
|
42 |
-
},
|
43 |
-
|
44 |
-
"icon-active": {
|
45 |
-
"color": "#dadada"
|
46 |
-
}
|
47 |
-
}
|
48 |
-
)
|
49 |
-
|
50 |
-
return navbar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/sdg_table.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def show_table(data_df):
|
4 |
-
st.write("------------------")
|
5 |
-
|
6 |
-
st.dataframe(
|
7 |
-
data_df[["title_main", "orga_abbreviation", "client", "description_main", "country", "sgd_pred_code"]],
|
8 |
-
use_container_width = True,
|
9 |
-
height = 35 + 35 * len(data_df),
|
10 |
-
column_config={
|
11 |
-
"orga_abbreviation": st.column_config.TextColumn(
|
12 |
-
"Organization",
|
13 |
-
help="If description not in English, description in other language provided",
|
14 |
-
disabled=True
|
15 |
-
),
|
16 |
-
"client": st.column_config.TextColumn(
|
17 |
-
"Client",
|
18 |
-
help="Client organization of customer",
|
19 |
-
disabled=True
|
20 |
-
),
|
21 |
-
"title_main": st.column_config.TextColumn(
|
22 |
-
"Title",
|
23 |
-
help="If title not in English, title in other language provided",
|
24 |
-
disabled=True
|
25 |
-
),
|
26 |
-
"description_main": st.column_config.TextColumn(
|
27 |
-
"Description",
|
28 |
-
help="If description not in English, description in other language provided",
|
29 |
-
disabled=True
|
30 |
-
),
|
31 |
-
"country": st.column_config.TextColumn(
|
32 |
-
"Country",
|
33 |
-
help="Country of project",
|
34 |
-
disabled=True
|
35 |
-
),
|
36 |
-
"sgd_pred_code": st.column_config.TextColumn(
|
37 |
-
"SDG Prediction",
|
38 |
-
help="Prediction of SDG's",
|
39 |
-
disabled=True
|
40 |
-
),
|
41 |
-
},
|
42 |
-
hide_index=True,
|
43 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/semantic_search.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
import pickle
|
2 |
-
import faiss
|
3 |
-
import streamlit as st
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
|
6 |
-
def show_search(model, faiss_index, sentences):
|
7 |
-
query = st.text_input("Enter your search query:")
|
8 |
-
|
9 |
-
if query:
|
10 |
-
# Convert query to embedding
|
11 |
-
query_embedding = model.encode([query])[0].reshape(1, -1)
|
12 |
-
|
13 |
-
# Perform search
|
14 |
-
D, I = faiss_index.search(query_embedding, k=5) # Search for top 5 similar items
|
15 |
-
|
16 |
-
# Display results
|
17 |
-
st.write("Top results:")
|
18 |
-
for i in I[0]:
|
19 |
-
st.write(sentences[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/similarity_table.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def show_table(data_df, similarities:list):
|
4 |
-
st.write("------------------")
|
5 |
-
|
6 |
-
st.dataframe(
|
7 |
-
data_df[["title_main", "orga_abbreviation", "client", "description_main", "country", "sgd_pred_code", "crs_3_code", "crs_5_code", "similarity"]],
|
8 |
-
use_container_width = True,
|
9 |
-
height = 35 + 35 * len(data_df),
|
10 |
-
column_config={
|
11 |
-
"orga_abbreviation": st.column_config.TextColumn(
|
12 |
-
"Organization",
|
13 |
-
help="If description not in English, description in other language provided",
|
14 |
-
disabled=True
|
15 |
-
),
|
16 |
-
"client": st.column_config.TextColumn(
|
17 |
-
"Client",
|
18 |
-
help="Client organization of customer",
|
19 |
-
disabled=True
|
20 |
-
),
|
21 |
-
"title_main": st.column_config.TextColumn(
|
22 |
-
"Title",
|
23 |
-
help="If title not in English, title in other language provided",
|
24 |
-
disabled=True
|
25 |
-
),
|
26 |
-
"description_main": st.column_config.TextColumn(
|
27 |
-
"Description",
|
28 |
-
help="If description not in English, description in other language provided",
|
29 |
-
disabled=True
|
30 |
-
),
|
31 |
-
"country": st.column_config.TextColumn(
|
32 |
-
"Country",
|
33 |
-
help="Country of project",
|
34 |
-
disabled=True
|
35 |
-
),
|
36 |
-
"sgd_pred_code": st.column_config.TextColumn(
|
37 |
-
"SDG Prediction",
|
38 |
-
help="Prediction of SDG's",
|
39 |
-
disabled=True
|
40 |
-
),
|
41 |
-
"crs_3_code": st.column_config.TextColumn(
|
42 |
-
"CRS 3",
|
43 |
-
help="CRS 3 code given by organization",
|
44 |
-
disabled=True
|
45 |
-
),
|
46 |
-
"crs_5_code": st.column_config.TextColumn(
|
47 |
-
"CRS 5",
|
48 |
-
help="CRS 5 code given by organization",
|
49 |
-
disabled=True
|
50 |
-
),
|
51 |
-
},
|
52 |
-
hide_index=True,
|
53 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|