Jan Mühlnikel
commited on
Commit
·
00341f5
1
Parent(s):
2080e6b
enhanced documentation
Browse files
functions/different_orga_filter.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
|
3 |
-
def different_orga_filter(df, orga):
|
4 |
-
# FILTER COUNTRY
|
5 |
-
country_filtered_df = pd.DataFrame()
|
6 |
-
for c in country_code_list:
|
7 |
-
c_df = df[df["country"].str.contains(c, na=False)]
|
8 |
-
country_filtered_df = pd.concat([country_filtered_df, c_df], ignore_index=False)
|
9 |
-
|
10 |
-
df = country_filtered_df
|
11 |
-
|
12 |
-
return country_filtered_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
functions/semantic_search.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
import pickle
|
2 |
import faiss
|
3 |
-
import streamlit as st
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
import pandas as pd
|
6 |
|
|
|
|
|
|
|
7 |
def search(query, model, embeddings, filtered_df, top_x=20):
|
8 |
|
9 |
filtered_df_indecies_list = filtered_df.index
|
@@ -21,7 +20,6 @@ def search(query, model, embeddings, filtered_df, top_x=20):
|
|
21 |
D, I = faiss_index.search(query_embedding, k=top_x) # Search for top x similar items
|
22 |
|
23 |
# Extract the sentences corresponding to the top indices
|
24 |
-
#print(filtered_df.columns())
|
25 |
top_indecies = [i for i in I[0]]
|
26 |
|
27 |
return filtered_df.iloc[top_indecies]
|
|
|
|
|
1 |
import faiss
|
|
|
|
|
|
|
2 |
|
3 |
+
"""
|
4 |
+
Semantic Search Function
|
5 |
+
"""
|
6 |
def search(query, model, embeddings, filtered_df, top_x=20):
|
7 |
|
8 |
filtered_df_indecies_list = filtered_df.index
|
|
|
20 |
D, I = faiss_index.search(query_embedding, k=top_x) # Search for top x similar items
|
21 |
|
22 |
# Extract the sentences corresponding to the top indices
|
|
|
23 |
top_indecies = [i for i in I[0]]
|
24 |
|
25 |
return filtered_df.iloc[top_indecies]
|
modules/singlematch_result_table.py
CHANGED
@@ -1,8 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def show_single_table(selected_project_index, projects_df, result_df):
|
|
|
|
|
|
|
5 |
|
|
|
6 |
result_df['crs_3_code_list'] = result_df['crs_3_name'].apply(
|
7 |
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
|
8 |
)
|
@@ -25,6 +34,7 @@ def show_single_table(selected_project_index, projects_df, result_df):
|
|
25 |
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";"))
|
26 |
)
|
27 |
|
|
|
28 |
st.subheader("Reference Project")
|
29 |
st.dataframe(
|
30 |
sel_p_row[["iati_id", "title_main", "orga_abbreviation", "client", "description_main", "country_name", "country_flag", "sdg_list", "crs_3_code_list", "crs_5_code_list"]],
|
@@ -92,6 +102,7 @@ def show_single_table(selected_project_index, projects_df, result_df):
|
|
92 |
)
|
93 |
|
94 |
|
|
|
95 |
if len(result_df) == 0:
|
96 |
st.write("No results found!")
|
97 |
else:
|
@@ -112,12 +123,6 @@ def show_single_table(selected_project_index, projects_df, result_df):
|
|
112 |
min_value=0,
|
113 |
max_value=100,
|
114 |
),
|
115 |
-
#"similarity": st.column_config.TextColumn(
|
116 |
-
# "Similarity",
|
117 |
-
# help="Similarity",
|
118 |
-
# disabled=True,
|
119 |
-
# width="small"
|
120 |
-
#),
|
121 |
"iati_id": st.column_config.TextColumn(
|
122 |
"IATI ID",
|
123 |
help="IATI Project ID",
|
|
|
1 |
import streamlit as st
|
2 |
+
|
3 |
+
|
4 |
+
"""
|
5 |
+
Result table of the Single Project Matching
|
6 |
+
"""
|
7 |
+
|
8 |
|
9 |
def show_single_table(selected_project_index, projects_df, result_df):
|
10 |
+
|
11 |
+
"""
|
12 |
+
TODO: Add this to preprocessing
|
13 |
|
14 |
+
"""
|
15 |
result_df['crs_3_code_list'] = result_df['crs_3_name'].apply(
|
16 |
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
|
17 |
)
|
|
|
34 |
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";"))
|
35 |
)
|
36 |
|
37 |
+
# Displaye selected project and infos
|
38 |
st.subheader("Reference Project")
|
39 |
st.dataframe(
|
40 |
sel_p_row[["iati_id", "title_main", "orga_abbreviation", "client", "description_main", "country_name", "country_flag", "sdg_list", "crs_3_code_list", "crs_5_code_list"]],
|
|
|
102 |
)
|
103 |
|
104 |
|
105 |
+
# Display the similar projects of teh slected project
|
106 |
if len(result_df) == 0:
|
107 |
st.write("No results found!")
|
108 |
else:
|
|
|
123 |
min_value=0,
|
124 |
max_value=100,
|
125 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
"iati_id": st.column_config.TextColumn(
|
127 |
"IATI ID",
|
128 |
help="IATI Project ID",
|