|
import pandas as pd |
|
import numpy as np |
|
|
|
def calc_matches(filtered_df, project_df, similarity_matrix, top_x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
filtered_df_indecies_list = filtered_df.index |
|
project_df_indecies_list = project_df.index |
|
|
|
np.fill_diagonal(similarity_matrix, 0) |
|
match_matrix = similarity_matrix[filtered_df_indecies_list, :][:, project_df_indecies_list] |
|
|
|
best_matches_list = np.argsort(match_matrix, axis=None) |
|
|
|
if len(best_matches_list) < top_x: |
|
top_x = len(best_matches_list) |
|
|
|
|
|
top_indices = np.unravel_index(best_matches_list[-top_x:], match_matrix.shape) |
|
|
|
|
|
top_values = match_matrix[top_indices] |
|
|
|
p1_df = filtered_df.iloc[top_indices[0]] |
|
p1_df["similarity"] = top_values |
|
p2_df = project_df.iloc[top_indices[1]] |
|
p2_df["similarity"] = top_values |
|
|
|
return p1_df, p2_df |
|
|
|
|
|
|
|
|
|
|