Jan Mühlnikel
experiment
cce39ff
raw
history blame
914 Bytes
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix, coo_matrix
import streamlit as st
# multi_project_matching
def calc_matches(filtered_df, project_df, similarity_matrix, top_x):
st.write(filtered_df.shape)
st.write(project_df.shape)
st.write(similarity_matrix.shape)
# Ensure the matrix is in a suitable format for manipulation
if not isinstance(similarity_matrix, csr_matrix):
similarity_matrix = csr_matrix(similarity_matrix)
filtered_indices = filtered_df.index.to_list()
project_indices = project_df.index.to_list()
st.write(filtered_indices[:100])
st.write(project_indices[:100])
"""
p1_df = filtered_df.loc[top_col_indices].copy()
p1_df['similarity'] = top_values
p2_df = project_df.loc[top_row_indices].copy()
p2_df['similarity'] = top_values
print("finished calc matches")
return p1_df, p2_df
"""