|
import numpy as np |
|
from scipy.sparse import csr_matrix |
|
|
|
""" |
|
Function to calculate the multi project matching results |
|
|
|
The Multi-Project Matching Feature uncovers synergy opportunities among various development banks and organizations by facilitating the search for similar projects |
|
within a selected filter setting (filtered_df) and all projects (project_df). |
|
""" |
|
|
|
def calc_multi_matches(filtered_df, project_df, similarity_matrix, top_x): |
|
""" |
|
filtered_df: df with applied filters |
|
project_df: df with all projects |
|
similarity_matrix: np sparse matrix with all similarities between projects |
|
top_x: top x project which should be displayed |
|
""" |
|
|
|
|
|
if not isinstance(similarity_matrix, csr_matrix): |
|
similarity_matrix = csr_matrix(similarity_matrix) |
|
|
|
|
|
filtered_indices = filtered_df.index.to_list() |
|
project_indices = project_df.index.to_list() |
|
|
|
|
|
match_matrix = similarity_matrix[project_indices, :][:, filtered_indices] |
|
dense_match_matrix = match_matrix.toarray() |
|
flat_matrix = dense_match_matrix.flatten() |
|
|
|
|
|
top_15_indices = np.argsort(flat_matrix)[-top_x:] |
|
|
|
|
|
top_15_2d_indices = np.unravel_index(top_15_indices, dense_match_matrix.shape) |
|
|
|
|
|
top_15_values = flat_matrix[top_15_indices] |
|
|
|
|
|
org_rows = [] |
|
org_cols = [] |
|
for value, row, col in zip(top_15_values, top_15_2d_indices[0], top_15_2d_indices[1]): |
|
original_row_index = project_indices[row] |
|
original_col_index = filtered_indices[col] |
|
org_rows.append(original_row_index) |
|
org_cols.append(original_col_index) |
|
|
|
|
|
|
|
|
|
""" |
|
p1_df: first results of match |
|
p2_df: matching result |
|
|
|
matches are displayed through the indecies od p1 and p2 dfs |
|
|
|
match1 p1_df.iloc[0] & p2_df.iloc[0] |
|
match2 p1_df.iloc[1] & p2_df.iloc[1] |
|
""" |
|
p1_df = filtered_df.loc[org_cols].copy() |
|
p1_df['similarity'] = top_15_values |
|
|
|
p2_df = project_df.loc[org_rows].copy() |
|
p2_df['similarity'] = top_15_values |
|
|
|
|
|
return p1_df, p2_df |
|
|