File size: 7,982 Bytes
c8e0175 5d7d815 cf7a437 c7e24a4 10d3373 cf7a437 c7e24a4 10d3373 c7e24a4 10d3373 14b1a2a 63ba39b cf7a437 c7e24a4 10d3373 cf7a437 c7e24a4 10d3373 c7e24a4 10d3373 5dbafb0 f5870ba 5d7d815 3718e9a 5d7d815 14b1a2a 5d7d815 4e1bb49 7bff086 4e1bb49 7bff086 4e1bb49 5d7d815 c8e0175 784ae4f 5d7d815 784ae4f 057b171 ffa25d2 db771ef f5870ba 784ae4f 5392bec 784ae4f ffa25d2 5392bec 82f1167 ffa25d2 5392bec ffa25d2 784ae4f db771ef 784ae4f ce64d44 784ae4f 7bff086 784ae4f 7bff086 784ae4f db771ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import pandas as pd
def show_single_table(selected_project_index, projects_df, result_df):
result_df['crs_3_code_list'] = result_df['crs_3_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
result_df['crs_5_code_list'] = result_df['crs_5_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
result_df['sdg_list'] = result_df['sgd_pred_code'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";"))
)
sel_p_row = projects_df.iloc[[selected_project_index]]
sel_p_row['crs_3_code_list'] = sel_p_row['crs_3_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
sel_p_row['crs_5_code_list'] = sel_p_row['crs_5_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
sel_p_row['sdg_list'] = sel_p_row['sgd_pred_code'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";"))
)
st.subheader("Reference Project")
st.dataframe(
sel_p_row[["iati_id", "title_main", "orga_abbreviation", "client", "description_main", "country_name", "country_flag", "sdg_list", "crs_3_code_list", "crs_5_code_list"]],
use_container_width = True,
height = 35 + 35 * len(sel_p_row),
column_config={
"iati_id": st.column_config.TextColumn(
"IATI ID",
help="IATI Project ID",
disabled=True,
width="small"
),
"orga_abbreviation": st.column_config.TextColumn(
"Organization",
help="If description not in English, description in other language provided",
disabled=True,
width="small"
),
"client": st.column_config.TextColumn(
"Client",
help="Client organization of customer",
disabled=True,
width="small"
),
"title_main": st.column_config.TextColumn(
"Title",
help="If title not in English, title in other language provided",
disabled=True,
width="large"
),
"description_main": st.column_config.TextColumn(
"Description",
help="If description not in English, description in other language provided",
disabled=True,
width="large"
),
"country_name": st.column_config.TextColumn(
"Country",
help="Country of project",
disabled=True,
width="small"
),
"country_flag": st.column_config.ImageColumn(
"Flag",
help="country flag",
width="small"
),
"sdg_list": st.column_config.ListColumn(
"SDG Prediction",
help="Prediction of SDG's",
width="small"
),
"crs_3_code_list": st.column_config.ListColumn(
"CRS 3",
help="CRS 3 code given by organization",
width="medium"
),
"crs_5_code_list": st.column_config.ListColumn(
"CRS 5",
help="CRS 5 code given by organization",
width="medium"
),
},
hide_index=True,
)
if len(result_df) == 0:
st.write("No results found!")
else:
result_df = result_df.reset_index(drop=True)
result_df['similarity'] = (result_df['similarity'] * 100).round(4)
st.write("----------------------")
st.subheader("Top 10 Similar Projects")
st.dataframe(
result_df[["similarity", "iati_id", "title_main", "orga_abbreviation", "client", "description_main", "country_name", "country_flag", "sdg_list", "crs_3_code_list", "crs_5_code_list"]],
use_container_width = True,
height = 35 + 35 * len(result_df),
column_config={
"similarity": st.column_config.ProgressColumn(
"Similarity",
help="Similarity",
format=" %f %%",
min_value=0,
max_value=100,
),
#"similarity": st.column_config.TextColumn(
# "Similarity",
# help="Similarity",
# disabled=True,
# width="small"
#),
"iati_id": st.column_config.TextColumn(
"IATI ID",
help="IATI Project ID",
disabled=True,
width="small"
),
"orga_abbreviation": st.column_config.TextColumn(
"Organization",
help="If description not in English, description in other language provided",
disabled=True,
width="small"
),
"client": st.column_config.TextColumn(
"Client",
help="Client organization of customer",
disabled=True,
width="small"
),
"title_main": st.column_config.TextColumn(
"Title",
help="If title not in English, title in other language provided",
disabled=True,
width="large"
),
"description_main": st.column_config.TextColumn(
"Description",
help="If description not in English, description in other language provided",
disabled=True,
width="large"
),
"country_name": st.column_config.TextColumn(
"Country",
help="Country of project",
disabled=True,
width="small"
),
"country_flag": st.column_config.ImageColumn(
"Flag",
help="country flag",
width="small"
),
"sdg_list": st.column_config.ListColumn(
"SDG Prediction",
help="Prediction of SDG's",
width="small"
),
"crs_3_code_list": st.column_config.ListColumn(
"CRS 3",
help="CRS 3 code given by organization",
width="medium"
),
"crs_5_code_list": st.column_config.ListColumn(
"CRS 5",
help="CRS 5 code given by organization",
width="medium"
),
},
hide_index=True,
)
|