File size: 3,925 Bytes
d551fc8
 
 
 
 
 
 
 
 
 
 
 
 
f123b98
d551fc8
 
f123b98
d551fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f123b98
 
d551fc8
f123b98
 
d551fc8
f123b98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Page for similarities
"""

################
# DEPENDENCIES #
################
import streamlit as st
import pandas as pd
from scipy.sparse import load_npz
import pickle
import faiss
from sentence_transformers import SentenceTransformer
from modules.result_table import show_table
import modules.semantic_search as semantic_search
from functions.filter_projects import filter_projects
from functions.calc_matches import calc_matches
import psutil
import os

def get_process_memory():
    process = psutil.Process(os.getpid())
    return process.memory_info().rss / (1024 * 1024) 

# Catch DATA
# Load Similarity matrix
@st.cache_data
def load_sim_matrix():
    loaded_matrix = load_npz("src/similarities.npz")
    dense_matrix = loaded_matrix.toarray()

    return dense_matrix

# Load Projects DFs
@st.cache_data
def load_projects():
    orgas_df = pd.read_csv("src/projects/project_orgas.csv")
    region_df = pd.read_csv("src/projects/project_region.csv")
    sector_df = pd.read_csv("src/projects/project_sector.csv")
    status_df = pd.read_csv("src/projects/project_status.csv")
    texts_df = pd.read_csv("src/projects/project_texts.csv")

    projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
    projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
    projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
    projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')

    return projects_df

# Load CRS 3 data
@st.cache_data
def getCRS3():
    # Read in CRS3 CODELISTS
    crs3_df = pd.read_csv('src/codelists/crs3_codes.csv')
    CRS3_CODES = crs3_df['code'].tolist()
    CRS3_NAME = crs3_df['name'].tolist()
    CRS3_MERGED = {f"{name} - {code}": code for name, code in zip(CRS3_NAME, CRS3_CODES)}

    return CRS3_MERGED

# Load CRS 5 data
@st.cache_data
def getCRS5():
    # Read in CRS3 CODELISTS
    crs5_df = pd.read_csv('src/codelists/crs5_codes.csv')
    CRS5_CODES = crs5_df['code'].tolist()
    CRS5_NAME = crs5_df['name'].tolist()
    CRS5_MERGED = {code: [f"{name} - {code}"] for name, code in zip(CRS5_NAME, CRS5_CODES)}

    return CRS5_MERGED

# Load SDG data
@st.cache_data
def getSDG():
    # Read in SDG CODELISTS
    sdg_df = pd.read_csv('src/codelists/sdg_goals.csv')
    SDG_NAMES = sdg_df['name'].tolist()

    return SDG_NAMES

# Load Sentence Transformer Model
@st.cache_resource
def load_model():
    model = SentenceTransformer('all-MiniLM-L6-v2')
    return model


# Load Embeddings
@st.cache_data 
def load_embeddings_and_index():
    # Load embeddings
    with open("src/embeddings.pkl", "rb") as fIn:
        stored_data = pickle.load(fIn)
    sentences = stored_data["sentences"]
    embeddings = stored_data["embeddings"]

    # Load or create FAISS index
    dimension = embeddings.shape[1]  
    faiss_index = faiss.IndexFlatL2(dimension)
    faiss_index.add(embeddings)

    return sentences, embeddings, faiss_index

# USE CACHE FUNCTIONS 
sim_matrix = load_sim_matrix()
projects_df = load_projects()

CRS3_MERGED = getCRS3()
CRS5_MERGED = getCRS5()
SDG_NAMES = getSDG()

model = load_model()
sentences, embeddings, faiss_index = load_embeddings_and_index()

def show_page():
    st.write(f"Current RAM usage of this app: {get_process_memory():.2f} MB")
    st.write("Similarities")

    col1, col2 = st.columns([1, 1])
    with col1:
        # CRS 3 SELECTION
        crs3_option = st.multiselect(
                        'CRS 3',
                        CRS3_MERGED,
                        placeholder="Select"
                        )
    
    with col2:
        st.write("x")


    # CRS CODE LIST
    crs3_list = [i[-3:] for i in crs3_option]

    # FILTER DF WITH SELECTED FILTER OPTIONS
    filtered_df = filter_projects(projects_df, crs3_list)

    # FIND MATCHES
    p1_df, p2_df = calc_matches(filtered_df, projects_df, sim_matrix)

    # SHOW THE RESULT
    show_table(p1_df, p2_df)