Last commit not found
# set path | |
import glob, os, sys; | |
sys.path.append('../utils') | |
#import needed libraries | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from utils.ghg_classifier import load_ghgClassifier, ghg_classification | |
import logging | |
logger = logging.getLogger(__name__) | |
from utils.config import get_classifier_params | |
from io import BytesIO | |
import xlsxwriter | |
import plotly.express as px | |
# Declare all the necessary variables | |
classifier_identifier = 'ghg' | |
params = get_classifier_params(classifier_identifier) | |
# Labels dictionary ### | |
_lab_dict = { | |
'NEGATIVE':'NO GHG TARGET', | |
'NA':'NOT APPLICABLE', | |
'TARGET':'GHG TARGET', | |
} | |
def to_excel(df): | |
len_df = len(df) | |
output = BytesIO() | |
writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
df.to_excel(writer, index=False, sheet_name='Sheet1') | |
workbook = writer.book | |
worksheet = writer.sheets['Sheet1'] | |
worksheet.data_validation('E2:E{}'.format(len_df), | |
{'validate': 'list', | |
'source': ['No', 'Yes', 'Discard']}) | |
writer.save() | |
processed_data = output.getvalue() | |
return processed_data | |
def app(): | |
### Main app code ### | |
with st.container(): | |
if 'key1' in st.session_state: | |
df = st.session_state.key1 | |
# Load the classifier model | |
classifier = load_ghgClassifier(classifier_name=params['model_name']) | |
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
if sum(df['Target Label'] == 'TARGET') > 100: | |
warning_msg = ": This might take sometime, please sit back and relax." | |
else: | |
warning_msg = "" | |
df = ghg_classification(haystack_doc=df, | |
threshold= params['threshold']) | |
st.session_state.key1 = df | |
def netzero_display(): | |
if 'key1' in st.session_state: | |
df = st.session_state.key2 | |
hits = df[df['GHG Label'] == 'TARGET'] | |
range_val = min(5,len(hits)) | |
if range_val !=0: | |
count_df = df['GHG Label'].value_counts() | |
count_df = count_df.rename('count') | |
count_df = count_df.rename_axis('GHG Label').reset_index() | |
count_df['Label_def'] = count_df['GHG Label'].apply(lambda x: _lab_dict[x]) | |
fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height =200) | |
c1, c2 = st.columns([1,1]) | |
with c1: | |
st.plotly_chart(fig,use_container_width= True) | |
hits = hits.sort_values(by=['GHG Score'], ascending=False) | |
st.write("") | |
st.markdown("###### Top few GHG Target Classified paragraph/text results ######") | |
range_val = min(5,len(hits)) | |
for i in range(range_val): | |
# the page number reflects the page that contains the main paragraph | |
# according to split limit, the overlapping part can be on a separate page | |
st.write('**Result {}** `page {}` (Relevancy Score: {:.2f})'.format(i+1,hits.iloc[i]['page'],hits.iloc[i]['GHG Score'])) | |
st.write("\t Text: \t{}".format(hits.iloc[i]['text'])) | |
else: | |
st.info("🤔 No GHG target found") | |