import logging import asyncio import json import ast from typing import List, Dict, Any, Union from dotenv import load_dotenv # LangChain imports from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_core.messages import SystemMessage, HumanMessage import os import configparser def getconfig(configfile_path: str): """ Read the config file Params ---------------- configfile_path: file path of .cfg file """ config = configparser.ConfigParser() try: config.read_file(open(configfile_path)) return config except: logging.warning("config file not found") # --------------------------------------------------------------------- # Provider-agnostic authentication and configuration # --------------------------------------------------------------------- def get_auth(provider: str) -> dict: """Get authentication configuration for different providers""" auth_configs = { "openai": {"api_key": os.getenv("OPENAI_API_KEY")}, "huggingface": {"api_key": os.getenv("HF_TOKEN")}, "anthropic": {"api_key": os.getenv("ANTHROPIC_API_KEY")}, "cohere": {"api_key": os.getenv("COHERE_API_KEY")}, } if provider not in auth_configs: raise ValueError(f"Unsupported provider: {provider}") auth_config = auth_configs[provider] api_key = auth_config.get("api_key") if not api_key: raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.") return auth_config # --------------------------------------------------------------------- # Model / client initialization (non exaustive list of providers) # --------------------------------------------------------------------- config = getconfig("model_params.cfg") PROVIDER = config.get("generator", "PROVIDER") MODEL = config.get("generator", "MODEL") MAX_TOKENS = int(config.get("generator", "MAX_TOKENS")) TEMPERATURE = float(config.get("generator", "TEMPERATURE")) INFERENCE_PROVIDER = config.get("generator", "INFERENCE_PROVIDER") ORGANIZATION = config.get("generator", "ORGANIZATION") # Set up authentication for the selected provider auth_config = get_auth(PROVIDER) def get_chat_model(): """Initialize the appropriate LangChain chat model based on provider""" common_params = { "temperature": TEMPERATURE, "max_tokens": MAX_TOKENS, } #### Currently the option to fetach any other Generator type are disabled #####3 # if PROVIDER == "openai": # return ChatOpenAI( # model=MODEL, # openai_api_key=auth_config["api_key"], # **common_params # ) # elif PROVIDER == "anthropic": # return ChatAnthropic( # model=MODEL, # anthropic_api_key=auth_config["api_key"], # **common_params # ) # elif PROVIDER == "cohere": # return ChatCohere( # model=MODEL, # cohere_api_key=auth_config["api_key"], # **common_params # ) if PROVIDER == "huggingface": # Initialize HuggingFaceEndpoint with explicit parameters llm = HuggingFaceEndpoint( repo_id=MODEL, huggingfacehub_api_token=auth_config["api_key"], task="text-generation", provider=INFERENCE_PROVIDER, server_kwargs={"bill_to": ORGANIZATION}, temperature=TEMPERATURE, max_new_tokens=MAX_TOKENS ) return ChatHuggingFace(llm=llm) else: raise ValueError(f"Unsupported provider: {PROVIDER}") # Initialize provider-agnostic chat model chat_model = get_chat_model() # --------------------------------------------------------------------- # Core generation function for both Gradio UI and MCP # --------------------------------------------------------------------- async def _call_llm(messages: list) -> str: """ Provider-agnostic LLM call using LangChain. Args: messages: List of LangChain message objects Returns: Generated response content as string """ try: # Use async invoke for better performance response = await chat_model.ainvoke(messages) print(response) return response.content #return response.content.strip() except Exception as e: logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}") raise def build_messages(question: str, context: str) -> list: """ Build messages in LangChain format. Args: question: The user's question context: The relevant context for answering Returns: List of LangChain message objects """ system_content = ( """ You are an expert assistant. Your task is to generate accurate, helpful responses using only the information contained in the "CONTEXT" provided. Instructions: - Answer based only on provided context: Use only the information present in the retrieved_paragraphs below. Do not use any external knowledge or make assumptions beyond what is explicitly stated. - Language matching: Respond in the same language as the user's query. - Handle missing information: If the retrieved paragraphs do not contain sufficient information to answer the query, respond with "I don't know" or equivalent in the query language. If information is incomplete, state what you know and acknowledge limitations. - Be accurate and specific: When information is available, provide clear, specific answers. Include relevant details, useful facts, and numbers from the context. - Stay focused: Answer only what is asked. Do not provide additional information not requested. - Structure your response effectively: * Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation. * Use bullet points and lists when it makes sense to improve readability. * You do not need to use every passage. Only use the ones that help answer the question. - Format your response properly: Use markdown formatting (bullet points, numbered lists, headers) to make your response clear and easy to read. Example:
for linebreaks Input Format: - Query: {query} - Retrieved Paragraphs: {retrieved_paragraphs} Generate your response based on these guidelines. """ ) user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}" return [ SystemMessage(content=system_content), HumanMessage(content=user_content) ] async def generate(query: str, context: Union[str, List[Dict[str, Any]]]) -> str: """ Generate an answer to a query using provided context through RAG. This function takes a user query and relevant context, then uses a language model to generate a comprehensive answer based on the provided information. Args: query (str): User query context (list): List of retrieval result objects (dictionaries) Returns: str: The generated answer based on the query and context """ if not query.strip(): return "Error: Query cannot be empty" # Handle both string context (for Gradio UI) and list context (from retriever) if isinstance(context, list): if not context: return "Error: No retrieval results provided" # Process the retrieval results # processed_results = extract_relevant_fields(context) formatted_context = context # if not formatted_context.strip(): # return "Error: No valid content found in retrieval results" elif isinstance(context, str): if not context.strip(): return "Error: Context cannot be empty" formatted_context = context else: return "Error: Context must be either a string or list of retrieval results" try: messages = build_messages(query, formatted_context) answer = await _call_llm(messages) return answer except Exception as e: logging.exception("Generation failed") return f"Error: {str(e)}"