Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import glob | |
| import os | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter | |
| from transformers import AutoTokenizer | |
| from langchain_community.document_loaders import PyMuPDFLoader | |
| from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings | |
| from langchain_community.vectorstores import Qdrant | |
| #from dotenv import load_dotenv | |
| #load_dotenv() | |
| #HF_token = os.environ["HF_TOKEN"] | |
| path_to_data = "./data/" | |
| def process_pdf(): | |
| files = {'MWTS2021':'./data/MWTS2021.pdf', | |
| 'MWTS2022':'./data/MWTS2022.pdf', | |
| 'Consolidated2021':'./data/Consolidated2021.pdf'} | |
| docs = {} | |
| for file,value in files.items(): | |
| try: | |
| docs[file] = PyMuPDFLoader(value).load() | |
| except Exception as e: | |
| print("Exception: ", e) | |
| # text splitter based on the tokenizer of a model of your choosing | |
| # to make texts fit exactly a transformer's context window size | |
| # langchain text splitters: https://python.langchain.com/docs/modules/data_connection/document_transformers/ | |
| chunk_size = 256 | |
| text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer( | |
| AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"), | |
| chunk_size=chunk_size, | |
| chunk_overlap=10, | |
| add_start_index=True, | |
| strip_whitespace=True, | |
| separators=["\n\n", "\n"], | |
| ) | |
| all_documents = {'Consolidated':[], 'MWTS':[]} | |
| for file,value in docs.items(): | |
| doc_processed = text_splitter.split_documents(value) | |
| for doc in doc_processed: | |
| doc.metadata["source"] = file | |
| doc.metadata["year"] = file[-4:] | |
| for key in all_documents: | |
| if key in file: | |
| print(key) | |
| all_documents[key].append(doc_processed) | |
| for key, docs_processed in all_documents.items(): | |
| docs_processed = [item for sublist in docs_processed for item in sublist] | |
| all_documents[key] = docs_processed | |
| embeddings = HuggingFaceEmbeddings( | |
| model_kwargs = {'device': 'cpu'}, | |
| encode_kwargs = {'normalize_embeddings': True}, | |
| model_name="BAAI/bge-small-en-v1.5" | |
| ) | |
| qdrant_collections = {} | |
| for file,value in all_documents.items(): | |
| print("emebddings for:",file) | |
| qdrant_collections[file] = Qdrant.from_documents( | |
| value, | |
| embeddings, | |
| location=":memory:", | |
| collection_name=file, | |
| ) | |
| print("done") | |
| return qdrant_collections |