Spaces:
GIZ
/
Running on CPU Upgrade

File size: 18,472 Bytes
c83f30f
054da8d
4cb1652
054da8d
4cb1652
5a4f54c
c71c0cf
3eaba6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054da8d
 
4cb1652
054da8d
4cb1652
 
 
c71c0cf
4cb1652
 
 
 
 
c71c0cf
4cb1652
 
c71c0cf
4cb1652
 
 
c71c0cf
4cb1652
c71c0cf
4cb1652
 
c71c0cf
 
 
 
 
054da8d
c71c0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054da8d
3eaba6e
c71c0cf
3eaba6e
 
054da8d
3eaba6e
c71c0cf
3eaba6e
054da8d
c71c0cf
 
 
 
054da8d
 
 
 
3eaba6e
054da8d
c71c0cf
054da8d
 
 
3eaba6e
054da8d
c71c0cf
 
3eaba6e
c71c0cf
 
 
 
 
 
3eaba6e
 
 
 
 
c71c0cf
3eaba6e
 
c71c0cf
3eaba6e
c71c0cf
 
 
 
 
 
 
 
 
 
 
3eaba6e
 
c71c0cf
3eaba6e
 
 
 
 
054da8d
c71c0cf
054da8d
3eaba6e
 
054da8d
3eaba6e
054da8d
 
c71c0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eaba6e
c71c0cf
 
 
 
 
 
 
 
3eaba6e
 
c71c0cf
 
 
054da8d
3eaba6e
c71c0cf
054da8d
 
3eaba6e
 
 
 
 
 
054da8d
c71c0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eaba6e
054da8d
c71c0cf
 
3eaba6e
054da8d
 
 
c71c0cf
 
054da8d
c71c0cf
 
054da8d
c71c0cf
 
 
 
 
3eaba6e
c71c0cf
 
 
 
 
 
 
 
 
 
 
054da8d
c71c0cf
 
 
 
 
 
 
 
3eaba6e
 
c71c0cf
3eaba6e
c71c0cf
 
 
 
 
 
 
 
 
3eaba6e
 
054da8d
3eaba6e
c71c0cf
 
 
 
 
 
3eaba6e
c71c0cf
 
3eaba6e
c71c0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb1652
3eaba6e
 
c71c0cf
054da8d
c71c0cf
 
3eaba6e
 
 
 
 
 
 
c71c0cf
3eaba6e
 
c71c0cf
 
 
 
 
3eaba6e
c71c0cf
 
3eaba6e
 
 
 
 
 
 
c71c0cf
3eaba6e
 
c71c0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eaba6e
054da8d
c71c0cf
3eaba6e
c71c0cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import gradio as gr
import time
import pandas as pd
from uuid import uuid4
from gradio_client import Client, handle_file

# Sample questions for examples 
SAMPLE_QUESTIONS = {
    "Deforestation Analysis": [
        "What are the main deforestation hotspots in Ecuador?",
        "Show me deforestation trends in the uploaded area",
        "What commodities are driving deforestation in Guatemala?"
    ],
    "EUDR Compliance": [
        "What are the key EUDR requirements for coffee imports?",
        "How do I prove due diligence for my supply chain?",
        "What documentation is needed for EUDR compliance?"
    ],
    "Risk Assessment": [
        "What is the deforestation risk level in this region?",
        "How do I assess supply chain risks?",
        "What are the compliance deadlines?"
    ]
}

def handle_geojson_upload(file):
    """Handle GeoJSON file upload and call WHISP API"""
    if file is not None:
        try:
            # Initialize WHISP API client
            client = Client("https://giz-chatfed-whisp.hf.space/")
            
            # Call the API with the uploaded file
            result = client.predict(
                file=handle_file(file.name),
                api_name="/get_statistics"
            )
            
            # Convert result to DataFrame
            df = pd.DataFrame(result['data'], columns=result['headers'])
            
            return (
                "✅ GeoJSON file processed successfully! Analysis results are displayed below.",
                gr.update(visible=True),  # upload_status
                gr.update(value=df, visible=True)  # results_table
            )
            
        except Exception as e:
            error_msg = f"❌ Error processing GeoJSON file: {str(e)}"
            return (
                error_msg,
                gr.update(visible=True),  # upload_status
                gr.update(visible=False)  # results_table
            )
    else:
        return (
            "",
            gr.update(visible=False),  # upload_status
            gr.update(visible=False)   # results_table
        )


def retrieve_paragraphs(query):

    """Connect to retriever and retrieve paragraphs"""
    
    if file is not None:
        try:
            # Initialize WHISP API client
            client = Client("https://giz-eudr-retriever.hf.space/")
            
            # Call the API with the uploaded file
            result = client.predict(
                file=handle_file(file.name),
                api_name="/retrieve"
            )
            
            return (
                "These are the most relevant findings.",
                gr.update(visible=True),  # upload_status
                gr.update(value=results, visible=True)  # results_table
            )
            
        except Exception as e:
            error_msg = f"❌ Error creating a response {str(e)}"
            return (
                error_msg,
                gr.update(visible=True),  # upload_status
                gr.update(visible=False)  # results_table
            )
    
    else:
        return (
            "",
            gr.update(visible=False),  # upload_status
            gr.update(visible=False)   # results_table
         )


def start_chat(query, history):
    """Start a new chat interaction"""
    history = history + [(query, None)]
    return gr.update(interactive=False), gr.update(selected=1), history

def finish_chat():
    """Finish chat and reset input"""
    return gr.update(interactive=True, value="")

async def chat_response(query, history, method, country, uploaded_file):
    """Generate chat response based on method and inputs"""
    
    # Validate inputs based on method
    if method == "Upload GeoJSON":
        if uploaded_file is None:
            warning_message = "⚠️ **No GeoJSON file uploaded.** Please upload a GeoJSON file first."
            history[-1] = (query, warning_message)
            yield history, ""
            return
    else:  # "Talk to Reports"
        if not country:
            warning_message = "⚠️ **No country selected.** Please select a country to analyze reports."
            history[-1] = (query, warning_message)
            yield history, ""
            return
    
    # Simulate processing time
    response = ""
    if method == "Upload GeoJSON":
        full_response = f"Based on your uploaded GeoJSON file, I can help you analyze the deforestation patterns and EUDR compliance aspects in your area of interest. Your question: '{query}' is being processed against the geographic data you provided."
    else:
        full_response = f"Based on EUDR reports for {country}, I can help you understand deforestation patterns and compliance requirements. Your question: '{query}' is being analyzed against our {country} database."
    
    # Simulate streaming response
    words = full_response.split()
    for word in words:
        response += word + " "
        history[-1] = (query, response)
        yield history, "**Sources:** Sample source documents would appear here..."
        await asyncio.sleep(0.05)

def toggle_search_method(method):
    """Toggle between GeoJSON upload and country selection"""
    if method == "Upload GeoJSON":
        return (
            gr.update(visible=True),   # geojson_section
            gr.update(visible=False),  # reports_section
            gr.update(value=None),     # dropdown_country
        )
    else:  # "Talk to Reports"
        return (
            gr.update(visible=False),  # geojson_section 
            gr.update(visible=True),   # reports_section
            gr.update(),               # dropdown_country
        )

def change_sample_questions(key):
    """Update visible examples based on selected category"""
    keys = list(SAMPLE_QUESTIONS.keys())
    index = keys.index(key)
    visible_bools = [False] * len(keys)
    visible_bools[index] = True
    return [gr.update(visible=visible_bools[i]) for i in range(len(keys))]

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="green",
    secondary_hue="blue",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
    text_size=gr.themes.utils.sizes.text_sm,
)

# Custom CSS for DataFrame styling
custom_css = """
/* DataFrame text sizing - Modify these values to change text size */
.dataframe table {
    font-size: 12px !important;  /* Change this value (e.g., 10px, 14px, 16px) */
}

.dataframe th {
    font-size: 13px !important;  /* Header text size */
    font-weight: 600 !important;
}

.dataframe td {
    font-size: 12px !important;  /* Cell text size */
    padding: 8px !important;     /* Cell padding */
}

/* Alternative size classes - change elem_classes="dataframe-small" in DataFrame component */
.dataframe-small table { font-size: 10px !important; }
.dataframe-small th { font-size: 11px !important; }
.dataframe-small td { font-size: 10px !important; }

.dataframe-medium table { font-size: 14px !important; }
.dataframe-medium th { font-size: 15px !important; }
.dataframe-medium td { font-size: 14px !important; }

.dataframe-large table { font-size: 16px !important; }
.dataframe-large th { font-size: 17px !important; }
.dataframe-large td { font-size: 16px !important; }
"""

init_prompt = """
Hello, I am EUDR Q&A, an AI-powered conversational assistant designed to help you understand EU Deforestation Regulation compliance and analysis. I will answer your questions by using **EUDR reports and uploaded GeoJSON files**.

💡 **How to use (tabs on right)**
- **Data Sources**: Choose to either upload a GeoJSON file for analysis or talk to EUDR reports filtered by country.
- **Examples**: Select from curated example questions across different categories.
- **Sources**: View the content sources used to generate answers for fact-checking.

⚠️ For limitations and data collection information, please check the **Disclaimer** tab.
"""

with gr.Blocks(title="EUDR Q&A", theme=theme, css=custom_css) as demo:
    
    # Main Chat Interface
    with gr.Tab("EUDR Q&A"):
        with gr.Row():
            # Left column - Chat interface (2/3 width)
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(
                    value=[(None, init_prompt)],
                    show_copy_button=True,
                    show_label=False,
                    layout="panel",
                    avatar_images=(None, "🌳"),
                    height=500
                )
                
                # Feedback UI
                with gr.Column():
                    with gr.Row(visible=False) as feedback_row:
                        gr.Markdown("Was this response helpful?")
                        with gr.Row():
                            okay_btn = gr.Button("👍 Okay", size="sm")
                            not_okay_btn = gr.Button("👎 Not to expectations", size="sm")
                    feedback_thanks = gr.Markdown("Thanks for the feedback!", visible=False)
                
                # Input textbox
                with gr.Row():
                    textbox = gr.Textbox(
                        placeholder="Ask me anything about EUDR compliance or upload your GeoJSON for analysis!",
                        show_label=False,
                        scale=7,
                        lines=1,
                        interactive=True
                    )
            
            # Right column - Controls and tabs (1/3 width)
            with gr.Column(scale=1, variant="panel"):
                with gr.Tabs() as tabs:
                    
                    # Data Sources Tab
                    with gr.Tab("Data Sources", id=2):
                        search_method = gr.Radio(
                            choices=["Upload GeoJSON", "Talk to Reports"],
                            label="Choose data source",
                            info="Upload a GeoJSON file for analysis or select country-specific EUDR reports",
                            value="Upload GeoJSON",
                        )
                        
                        # GeoJSON Upload Section
                        with gr.Group(visible=True) as geojson_section:
                            uploaded_file = gr.File(
                                label="Upload GeoJSON File",
                                file_types=[".geojson", ".json"],
                                file_count="single"
                            )
                            upload_status = gr.Markdown("", visible=False)
                            
                            # Results table for WHISP API response
                            results_table = gr.DataFrame(
                                label="Analysis Results",
                                visible=False,
                                interactive=False,
                                wrap=True,
                                elem_classes="dataframe"
                            )
                        
                        # Talk to Reports Section
                        with gr.Group(visible=False) as reports_section:
                            dropdown_country = gr.Dropdown(
                                ["Ecuador", "Guatemala"],
                                label="Select Country",
                                value=None,
                                interactive=True,
                            )
                    
                    # Examples Tab
                    with gr.Tab("Examples", id=0):
                        examples_hidden = gr.Textbox(visible=False)
                        
                        first_key = list(SAMPLE_QUESTIONS.keys())[0]
                        dropdown_samples = gr.Dropdown(
                            SAMPLE_QUESTIONS.keys(),
                            value=first_key,
                            interactive=True,
                            show_label=True,
                            label="Select a category of sample questions"
                        )
                        
                        # Create example sections
                        sample_groups = []
                        for i, (key, questions) in enumerate(SAMPLE_QUESTIONS.items()):
                            examples_visible = True if i == 0 else False
                            with gr.Row(visible=examples_visible) as group_examples:
                                gr.Examples(
                                    questions,
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                )
                            sample_groups.append(group_examples)
                    
                    # Sources Tab
                    with gr.Tab("Sources", id=1):
                        sources_textbox = gr.HTML(
                            show_label=False,
                            value="Source documents will appear here after you ask a question..."
                        )
    
    # Guidelines Tab
    with gr.Tab("Guidelines"):
        gr.Markdown("""
        #### Welcome to EUDR Q&A! 
        
        This AI-powered assistant helps you understand EU Deforestation Regulation compliance and analyze geographic data.
        
        ## 💬 How to Ask Effective Questions
        
        | ❌ Less Effective | ✅ More Effective |
        |------------------|-------------------|
        | "What is deforestation?" | "What are the main deforestation hotspots in Ecuador?" |
        | "Tell me about compliance" | "What EUDR requirements apply to coffee imports from Guatemala?" |
        | "Show me data" | "What is the deforestation rate in the uploaded region?" |
        
        ## 🔍 Using Data Sources
        
        **Upload GeoJSON:** Upload your geographic data files for automatic analysis via WHISP API  
        **Talk to Reports:** Select Ecuador or Guatemala for country-specific EUDR analysis
        
        ## ⭐ Best Practices
        
        - Be specific about regions, commodities, or time periods
        - Ask one question at a time for clearer answers
        - Use follow-up questions to explore topics deeper
        - Provide context when possible
        """)
    
    # About Tab
    with gr.Tab("About"):
        gr.Markdown("""
        ## About EUDR Q&A
        
        The **EU Deforestation Regulation (EUDR)** requires companies to ensure that specific commodities 
        placed on the EU market are deforestation-free and legally produced.
        
        This AI-powered tool helps stakeholders:
        - Understand EUDR compliance requirements
        - Analyze geographic deforestation data using WHISP API
        - Assess supply chain risks
        - Navigate complex regulatory landscapes
        
        **Developed by GIZ** to enhance accessibility and understanding of EUDR requirements 
        through advanced AI and geographic data processing capabilities.
        
        ### Key Features:
        - Automatic analysis of uploaded GeoJSON files via WHISP API
        - Country-specific EUDR compliance guidance
        - Real-time question answering with source citations
        - User-friendly interface for complex regulatory information
        """)
    
    # Disclaimer Tab
    with gr.Tab("Disclaimer"):
        gr.Markdown("""
        ## Important Disclaimers
        
        ⚠️ **Scope & Limitations:**
        - This tool is designed for EUDR compliance assistance and geographic data analysis
        - Responses should not be considered official legal or compliance advice
        - Always consult qualified professionals for official compliance decisions
        
        ⚠️ **Data & Privacy:**
        - Uploaded GeoJSON files are processed via external WHISP API for analysis
        - We collect usage statistics to improve the tool
        - Files are processed temporarily and not permanently stored
        
        ⚠️ **AI Limitations:**
        - Responses are AI-generated and may contain inaccuracies
        - The tool is a prototype under continuous development
        - Always verify important information with authoritative sources
        
        **Data Collection:** We collect questions, answers, feedback, and anonymized usage statistics 
        to improve tool performance based on legitimate interest in service enhancement.
        
        By using this tool, you acknowledge these limitations and agree to use responses responsibly.
        """)
    
    # Event Handlers
    
    # Toggle search method
    search_method.change(
        fn=toggle_search_method,
        inputs=[search_method],
        outputs=[geojson_section, reports_section, dropdown_country]
    )
    
    # File upload - automatically process when file is uploaded
    uploaded_file.change(
        fn=handle_geojson_upload,
        inputs=[uploaded_file],
        outputs=[upload_status, upload_status, results_table]
    )
    
    # Chat functionality
    textbox.submit(
        start_chat,
        [textbox, chatbot],
        [textbox, tabs, chatbot],
        queue=False
    ).then(
        chat_response,
        [textbox, chatbot, search_method, dropdown_country, uploaded_file],
        [chatbot, sources_textbox]
    ).then(
        lambda: gr.update(visible=True),
        outputs=[feedback_row]
    ).then(
        finish_chat,
        outputs=[textbox]
    )
    
    # Examples functionality
    examples_hidden.change(
        start_chat,
        [examples_hidden, chatbot],
        [textbox, tabs, chatbot],
        queue=False
    ).then(
        chat_response,
        [examples_hidden, chatbot, search_method, dropdown_country, uploaded_file],
        [chatbot, sources_textbox]
    ).then(
        lambda: gr.update(visible=True),
        outputs=[feedback_row]
    ).then(
        finish_chat,
        outputs=[textbox]
    )
    
    # Sample questions dropdown
    dropdown_samples.change(
        change_sample_questions,
        [dropdown_samples],
        sample_groups
    )
    
    # Feedback buttons
    okay_btn.click(
        lambda: (gr.update(visible=False), gr.update(visible=True)),
        outputs=[feedback_row, feedback_thanks]
    )
    
    not_okay_btn.click(
        lambda: (gr.update(visible=False), gr.update(visible=True)),
        outputs=[feedback_row, feedback_thanks]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()