submission-form / app.py
lewtun's picture
lewtun HF staff
Add description
2acc05f
raw
history blame
5.67 kB
import json
import os
import re
import shutil
import subprocess
from datetime import datetime
from pathlib import Path
import requests
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import HfApi, Repository
from validate import validate_submission
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTONLP_USERNAME = os.getenv("AUTONLP_USERNAME")
HF_AUTONLP_BACKEND_API = os.getenv("HF_AUTONLP_BACKEND_API")
LOCAL_REPO = "submission_repo"
def get_auth_headers(token: str, prefix: str = "autonlp"):
return {"Authorization": f"{prefix} {token}"}
def http_post(
path: str,
token: str,
payload=None,
domain: str = HF_AUTONLP_BACKEND_API,
suppress_logs: bool = False,
**kwargs,
) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.post(
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, **kwargs
)
except requests.exceptions.ConnectionError:
print("❌ Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
###########
### APP ###
###########
st.title("GEM Submissions")
st.markdown(
"""
Welcome to the [GEM benchmark](https://gem-benchmark.com/)! GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation, both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across many NLG tasks across languages.
- audit data and models and present results via data cards and model robustness reports.
- develop standards for evaluation of generated text using both automated and human metrics.
Use this page to submit your predcitions to the benchmark.
"""
)
with st.form(key="form"):
# Flush local repo
shutil.rmtree(LOCAL_REPO, ignore_errors=True)
uploaded_file = st.file_uploader("Upload submission.json file", type=["json"])
if uploaded_file is not None:
data = str(uploaded_file.read(), "utf-8")
json_data = json.loads(data)
with st.expander("Submission format"):
st.markdown(
"""
Please follow this JSON format for your `submission.json` file:
```json
{
"submission_name": "An identifying name of your system",
"param_count": 123, # The number of parameters your system has.
"description": "An optional brief description of the system that will be shown on the results page",
"tasks":
{
"dataset_identifier": {
"values": ["output1", "output2", "..."], # A list of system outputs.
# Optionally, you can add the keys which are part of an example to ensure that there is no shuffling mistakes.
"keys": ["key-0", "key-1", ...]
}
}
}
```
In this case, `dataset_identifier` is the identifier of the dataset
followed by an identifier of the set the outputs were created from, for
example `_validation` or `_test`. For example, the `mlsum_de` test set
would have the identifier `mlsum_de_test`. The `keys` field can be set
to avoid accidental shuffling to impact your metrics. Simply add a list
of the `gem_id` for each output example in the same order as your
values. Please see the sample submission below:
"""
)
with open("sample-submission.json", "r") as f:
example_submission = json.load(f)
st.json(example_submission)
token = st.text_input(
"Enter πŸ€— Hub access token",
type="password",
help="You can generate an access token via your πŸ€— Hub settings. See the [docs](https://huggingface.co/docs/hub/security#user-access-tokens) for more details",
)
submit_button = st.form_submit_button("Make Submission")
if submit_button:
validate_submission(json_data)
user_info = HfApi().whoami(token)
user_name = user_info["name"]
submission_name = json_data["submission_name"]
# Create submission dataset under benchmarks ORG
dataset_repo_url = f"https://huggingface.co/datasets/benchmarks/gem-{user_name}"
repo = Repository(
local_dir=LOCAL_REPO, clone_from=dataset_repo_url, repo_type="dataset", private=True, use_auth_token=HF_TOKEN
)
submission_metadata = {"benchmark": "gem", "type": "prediction", "submission_name": submission_name}
repo.repocard_metadata_save(submission_metadata)
with open(f"{LOCAL_REPO}/submission.json", "w", encoding="utf-8") as f:
json.dump(json_data, f)
# TODO: add informative commit msg
commit_url = repo.push_to_hub()
if commit_url is not None:
commit_sha = commit_url.split("/")[-1]
else:
commit_sha = repo.git_head_commit_url().split("/")[-1]
submission_time = str(int(datetime.now().timestamp()))
submission_id = submission_name + "__" + commit_sha + "__" + submission_time
payload = {
"username": AUTONLP_USERNAME,
"dataset": "GEM/references",
"task": 1,
"model": "gem",
"submission_dataset": f"benchmarks/gem-{user_name}",
"submission_id": submission_id,
"col_mapping": {},
"split": "test",
"config": None,
}
json_resp = http_post(path="/evaluate/create", payload=payload, token=HF_TOKEN).json()
st.write(json_data["submission_name"])
st.write(commit_sha)
st.write(json_resp)
# Flush local repo
shutil.rmtree(LOCAL_REPO, ignore_errors=True)