|
import json |
|
import math |
|
import os |
|
from typing import List, Dict |
|
import yaml |
|
import pdb |
|
|
|
from factool.math.tool import python_executor |
|
from factool.utils.base.pipeline import pipeline |
|
|
|
class math_pipeline(pipeline): |
|
def __init__(self, foundation_model): |
|
super().__init__('math', foundation_model) |
|
|
|
self.tool = python_executor() |
|
|
|
with open(os.path.join(self.prompts_path, "claim_extraction.yaml"), 'r') as file: |
|
data = yaml.load(file, Loader=yaml.FullLoader) |
|
self.claim_prompt = data['math'] |
|
|
|
with open(os.path.join(self.prompts_path, 'query_generation.yaml'), 'r') as file: |
|
data = yaml.load(file, Loader=yaml.FullLoader) |
|
self.query_prompt = data['math'] |
|
|
|
def _verification(self, exec_results): |
|
classification_results = [True for _ in range(len(exec_results))] |
|
for i in range(len(exec_results)): |
|
if exec_results[i] is not None and 'False' in exec_results[i]: |
|
classification_results[i] = False |
|
|
|
return classification_results |
|
|
|
async def _claim_extraction(self, samples): |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.claim_prompt['system']}, |
|
{"role": "user", "content": self.claim_prompt['user'].format(input_question=sample['prompt'], input_solution=sample['response'])}, |
|
] |
|
for sample in samples |
|
] |
|
return await self.chat.async_run(messages_list, List) |
|
|
|
async def _query_generation(self, claims): |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.query_prompt['system']}, |
|
{"role": "user", "content": self.query_prompt['user'].format(math_calculation=claim['math_calculation'], calculated_answer=claim['calculated_answer'])}, |
|
] |
|
for claim in claims |
|
] |
|
return await self.chat.async_run(messages_list, Dict) |
|
|
|
async def run_with_tool_live(self, samples): |
|
claims_in_responses = await self._claim_extraction(samples) |
|
queries_in_responses = [] |
|
exec_results_in_responses = [] |
|
verifications_in_responses = [] |
|
for claims_in_response in claims_in_responses: |
|
queries = await self._query_generation(claims_in_response) |
|
queries_in_responses.append(queries) |
|
exec_results = [] |
|
for query in queries: |
|
try: |
|
exec_results.append(self.tool.run(query['python_snippet'])) |
|
except: |
|
exec_results.append('None') |
|
exec_results_in_responses.append(exec_results) |
|
verifications = self._verification(exec_results) |
|
verifications_in_responses.append(verifications) |
|
|
|
return claims_in_responses, queries_in_responses, exec_results_in_responses, verifications_in_responses |
|
|
|
async def run_with_tool_live_without_claim_extraction(self, claims): |
|
queries = await self._query_generation(claims) |
|
|
|
exec_results = [] |
|
for query in queries: |
|
try: |
|
exec_results.append(self.tool.run(query['python_snippet'])) |
|
except: |
|
exec_results.append(None) |
|
classification_results = self._verification(exec_results) |
|
return queries, exec_results, classification_results |
|
|
|
async def run_with_tool_api_call(self, prompts, responses): |
|
batch_size = 5 |
|
num_batches = math.ceil(len(prompts) / batch_size) |
|
|
|
self.sample_list = [{"prompt": prompt, "response": response, "category": 'math'} for prompt, response in zip(prompts, responses)] |
|
|
|
for i in range(num_batches): |
|
print(i) |
|
batch_start = i * batch_size |
|
batch_end = min((i + 1) * batch_size, len(responses)) |
|
|
|
claims_in_responses, queries_in_responses, exec_results_in_response, verifications_in_responses = await self.run_with_tool_live(self.sample_list[batch_start: batch_end]) |
|
|
|
for j, (claims_in_response, queries_in_response, exec_results_in_response, verifications_in_response) in enumerate(zip(claims_in_responses, queries_in_responses, exec_results_in_response, verifications_in_responses)): |
|
index = batch_start + j |
|
|
|
self.sample_list[index].update({ |
|
'claims': claims_in_response, |
|
'queries': queries_in_response, |
|
'execution_results': exec_results_in_response, |
|
'claim_level_factuality': verifications_in_response, |
|
'response_level_factuality': all([verification if verification != None else True for verification in verifications_in_response]) |
|
}) |
|
|
|
return self.sample_list |
|
|
|
async def run_with_tool_dataset(self, annotated_dataset_path: str, with_tool_classified_dataset_path: str, rerun: bool = False, rerun_indices: list = []): |
|
data_path = annotated_dataset_path if not rerun else with_tool_classified_dataset_path |
|
with open(data_path, 'r') as f: |
|
data = [json.loads(line) for line in f] |
|
self.sample_list = data if rerun else [claim for sample in data for claim in sample['claims']] |
|
rerun_elements = self.sample_list if not rerun else [self.sample_list[i] for i in rerun_indices] |
|
|
|
batch_size = 10 |
|
num_batches = math.ceil(len(rerun_elements) / batch_size) |
|
|
|
for i in range(num_batches): |
|
print("test1") |
|
print(i) |
|
batch_start = i * batch_size |
|
batch_end = min((i + 1) * batch_size, len(rerun_elements)) |
|
batch = rerun_elements[batch_start:batch_end] |
|
|
|
queries, exec_results, classification_results = await self.run_with_tool_live_without_claim_extraction(batch) |
|
|
|
for j, (query, exec_result, classification_result) in enumerate(zip(queries, exec_results, classification_results)): |
|
index = batch_start + j if not rerun else rerun_indices[batch_start + j] |
|
self.sample_list[index].update({ |
|
'query': query, |
|
'exec_result': exec_result, |
|
'with_tool_classification': classification_result, |
|
}) |
|
|
|
|
|
with open(with_tool_classified_dataset_path, 'w') as f: |
|
for item in self.sample_list: |
|
try: |
|
json_str = json.dumps(item) |
|
except: |
|
continue |
|
f.write(json_str + '\n') |
|
|
|
async def run_self_check_live(self, fewshot, batch): |
|
user_prompt_key = 'user_3_shot_CoT' if fewshot else 'user_zero_shot_CoT' |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.self_check_prompt['system']}, |
|
{"role": "user", "content": self.self_check_prompt[user_prompt_key].format(input_calculation=response['math_calculation'], input_calculated_answer=response['calculated_answer'])}, |
|
] |
|
for response in batch |
|
] |
|
return await self.chat.async_run(messages_list, Dict) |
|
|
|
async def run_self_check_dataset(self, annotated_dataset_path: str, self_check_classified_dataset_path: str, fewshot: bool = False, rerun: bool = False, rerun_indices: list = []): |
|
data_path = annotated_dataset_path if not rerun else self_check_classified_dataset_path |
|
with open(data_path, 'r') as f: |
|
data = [json.loads(line) for line in f] |
|
self.sample_list = data if rerun else [claim for sample in data for claim in sample['claims']] |
|
rerun_elements = self.sample_list if not rerun else [self.sample_list[i] for i in rerun_indices] |
|
|
|
batch_size = 10 |
|
num_batches = math.ceil(len(rerun_elements) / batch_size) |
|
|
|
for i in range(num_batches): |
|
print(i) |
|
batch_start = i * batch_size |
|
batch_end = min((i + 1) * batch_size, len(rerun_elements)) |
|
batch = rerun_elements[batch_start:batch_end] |
|
|
|
responses = await self.run_self_check_live(fewshot, batch) |
|
for j, response in enumerate(responses): |
|
index = batch_start + j if not rerun else rerun_indices[batch_start + j] |
|
if response is None: |
|
self.sample_list[index].update({ |
|
'self_check_classification': 'None', |
|
'self_check_reasoning': 'None' |
|
}) |
|
else: |
|
self.sample_list[index].update({ |
|
'self_check_classification': response.get('factuality', 'None'), |
|
'self_check_reasoning': response.get('reasoning', 'None') |
|
}) |
|
|
|
|
|
with open(self_check_classified_dataset_path, 'w') as f: |
|
for item in self.sample_list: |
|
json_str = json.dumps(item) |
|
f.write(json_str + '\n') |