File size: 6,279 Bytes
d195d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# the async version is adapted from https://gist.github.com/neubig/80de662fb3e225c18172ec218be4917a

from __future__ import annotations

import os
import yaml
import openai
import ast
import pdb
import asyncio
from typing import Any, List
import os
import pathlib
import openai


# from factool.env_config import factool_env_config

# env
# openai.api_key = factool_env_config.openai_api_key

class OpenAIChat():
    def __init__(
            self,
            model_name='gpt-3.5-turbo',
            max_tokens=2500,
            temperature=0,
            top_p=1,
            request_timeout=60,
    ):
        openai.api_key = os.environ.get("OPENAI_API_KEY", None)
        assert openai.api_key is not None, "Please set the OPENAI_API_KEY environment variable."
        if 'gpt' not in model_name:
            openai.api_base = "http://localhost:8000/v1"
        self.config = {
            'model_name': model_name,
            'max_tokens': max_tokens,
            'temperature': temperature,
            'top_p': top_p,
            'request_timeout': request_timeout,
        }

    
    def _boolean_fix(self, output):
        return output.replace("true", "True").replace("false", "False")

    def _type_check(self, output, expected_type):
        try:
            output_eval = ast.literal_eval(output)
            if not isinstance(output_eval, expected_type):
                return None
            return output_eval
        except:
            return None

    async def dispatch_openai_requests(
        self,
        messages_list,
    ) -> list[str]:
        """Dispatches requests to OpenAI API asynchronously.
        
        Args:
            messages_list: List of messages to be sent to OpenAI ChatCompletion API.
        Returns:
            List of responses from OpenAI API.
        """
        async def _request_with_retry(messages, retry=3):
            for _ in range(retry):
                try:
                    response = await openai.ChatCompletion.acreate(
                        model=self.config['model_name'],
                        messages=messages,
                        max_tokens=self.config['max_tokens'],
                        temperature=self.config['temperature'],
                        top_p=self.config['top_p'],
                        request_timeout=self.config['request_timeout'],
                    )
                    return response
                except openai.error.RateLimitError:
                    print('Rate limit error, waiting for 40 second...')
                    await asyncio.sleep(40)
                except openai.error.APIError:
                    print('API error, waiting for 1 second...')
                    await asyncio.sleep(1)
                except openai.error.Timeout:
                    print('Timeout error, waiting for 1 second...')
                    await asyncio.sleep(1)
                except openai.error.ServiceUnavailableError:
                    print('Service unavailable error, waiting for 3 second...')
                    await asyncio.sleep(3)
                except openai.error.APIConnectionError:
                    print('API Connection error, waiting for 3 second...')
                    await asyncio.sleep(3)

            return None

        async_responses = [
            _request_with_retry(messages)
            for messages in messages_list
        ]

        return await asyncio.gather(*async_responses)
    
    async def async_run(self, messages_list, expected_type):
        retry = 1
        responses = [None for _ in range(len(messages_list))]
        messages_list_cur_index = [i for i in range(len(messages_list))]

        while retry > 0 and len(messages_list_cur_index) > 0:
            print(f'{retry} retry left...')
            messages_list_cur = [messages_list[i] for i in messages_list_cur_index]
            
            predictions = await self.dispatch_openai_requests(
                messages_list=messages_list_cur,
            )

            preds = [self._type_check(self._boolean_fix(prediction['choices'][0]['message']['content']), expected_type) if prediction is not None else None for prediction in predictions]

            finised_index = []
            for i, pred in enumerate(preds):
                if pred is not None:
                    responses[messages_list_cur_index[i]] = pred
                    finised_index.append(messages_list_cur_index[i])
            
            messages_list_cur_index = [i for i in messages_list_cur_index if i not in finised_index]
            
            retry -= 1
        
        return responses

class OpenAIEmbed():
    def __init__():
        openai.api_key = os.environ.get("OPENAI_API_KEY", None)
        assert openai.api_key is not None, "Please set the OPENAI_API_KEY environment variable."

    async def create_embedding(self, text, retry=3):
        for _ in range(retry):
            try:
                response = await openai.Embedding.acreate(input=text, model="text-embedding-ada-002")
                return response
            except openai.error.RateLimitError:
                print('Rate limit error, waiting for 1 second...')
                await asyncio.sleep(1)
            except openai.error.APIError:
                print('API error, waiting for 1 second...')
                await asyncio.sleep(1)
            except openai.error.Timeout:
                print('Timeout error, waiting for 1 second...')
                await asyncio.sleep(1)
        return None

    async def process_batch(self, batch, retry=3):
        tasks = [self.create_embedding(text, retry=retry) for text in batch]
        return await asyncio.gather(*tasks)

if __name__ == "__main__":
    chat = OpenAIChat()

    predictions = chat.async_run(
        messages_list=[
            [{"role": "user", "content": "show either 'ab' or '['a']'. Do not do anything else."}],
        ] * 20,
        expected_type=List,
    )

    # Usage
    embed = OpenAIEmbed()
    batch = ["string1", "string2", "string3", "string4", "string5", "string6", "string7", "string8", "string9", "string10"]  # Your batch of strings
    embeddings = asyncio.run(embed.process_batch(batch, retry=3))
    for embedding in embeddings:
        print(embedding["data"][0]["embedding"])