import os, gc import gradio as gr import numpy as np import random from transformers import CLIPTokenizer, CLIPFeatureExtractor import spaces from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler import torch torch.cuda.empty_cache() device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.bfloat16 tokenizer = CLIPTokenizer.from_pretrained( "openai/clip-vit-base-patch32", # or clip-vit-large if you prefer use_fast=True ) feature_extractor = CLIPFeatureExtractor.from_pretrained( "openai/clip-vit-base-patch32" ) # 3) Dispatch & load in FP16 with offloading pipe = DiffusionPipeline.from_pretrained( model_repo_id, scheduler=FlowMatchEulerDiscreteScheduler.from_pretrained( model_repo_id, subfolder="scheduler", shift=5, use_safetensors=True ), tokenizer=tokenizer, feature_extractor=feature_extractor, torch_dtype=torch.bfloat16, # load weights in half-precision use_safetensors=True ) # 4) Memory savings hooks (all on your single GPU + CPU offload) pipe.enable_attention_slicing() # slice big attention maps pipe.vae.enable_slicing() # slice VAE decode pipe.enable_xformers_memory_efficient_attention() # if xformers is installed pipe.enable_model_cpu_offload() # offload idle submodules to CPU MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=1.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True), ): full_prompt = "cartoon styled korean" + prompt if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=full_prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed css = """ body { background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%); background-attachment: fixed; min-height: 100vh; } #col-container { margin: 0 auto; max-width: 640px; background-color: rgba(255, 255, 255, 0.85); border-radius: 16px; box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1); padding: 24px; backdrop-filter: blur(10px); } .gradio-container { background: transparent !important; } .gr-button-primary { background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important; border: none !important; transition: all 0.3s ease; } .gr-button-primary:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3); } .gr-form { border-radius: 12px; background-color: rgba(255, 255, 255, 0.7); } .gr-accordion { border-radius: 12px; overflow: hidden; } h1 { background: linear-gradient(90deg, #6b9dfc, #8c6bfc); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 800; } """ with gr.Blocks(theme="apriel", css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt copied from the previous website", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=1.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=8, ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch(mcp_server=True)