File size: 5,722 Bytes
400f5fc
6e5e1d5
 
 
98d097f
6e5e1d5
13da042
6e5e1d5
0649cb9
6e5e1d5
 
88f16e0
6e5e1d5
 
1145832
6e5e1d5
f807c45
6e5e1d5
98d097f
 
400f5fc
 
98d097f
 
400f5fc
 
 
 
 
 
 
 
 
 
 
 
 
a04d240
5d40972
400f5fc
13da042
5d40972
 
a18405b
5d40972
 
 
6e5e1d5
 
 
 
 
 
 
 
 
 
 
88f16e0
 
6e5e1d5
 
62e8450
7e338ff
6e5e1d5
 
 
 
 
 
7e338ff
6e5e1d5
 
 
 
 
 
 
 
 
 
 
08f603c
 
 
 
 
 
6e5e1d5
 
 
08f603c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e5e1d5
 
 
c186777
6e5e1d5
 
 
 
 
 
4993a5f
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f16e0
6e5e1d5
 
 
 
 
 
 
88f16e0
6e5e1d5
 
 
 
 
 
7e338ff
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
0691ff2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os, gc
import gradio as gr
import numpy as np
import random
from transformers import CLIPTokenizer, CLIPFeatureExtractor
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import torch
torch.cuda.empty_cache()

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.bfloat16

tokenizer = CLIPTokenizer.from_pretrained(
    "openai/clip-vit-base-patch32",  # or clip-vit-large if you prefer
    use_fast=True
)
feature_extractor = CLIPFeatureExtractor.from_pretrained(
    "openai/clip-vit-base-patch32"
)

# 3) Dispatch & load in FP16 with offloading
pipe = DiffusionPipeline.from_pretrained(
    model_repo_id,
    scheduler=FlowMatchEulerDiscreteScheduler.from_pretrained(
        model_repo_id,
        subfolder="scheduler",
        shift=5,
        use_safetensors=True
    ),
    tokenizer=tokenizer,
    feature_extractor=feature_extractor,
    torch_dtype=torch.bfloat16,   # load weights in half-precision
    use_safetensors=True
)

# 4) Memory savings hooks (all on your single GPU + CPU offload)
pipe.enable_attention_slicing()                     # slice big attention maps
pipe.vae.enable_slicing()                          # slice VAE decode
pipe.enable_xformers_memory_efficient_attention()   # if xformers is installed
pipe.enable_model_cpu_offload()                     # offload idle submodules to CPU

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=65)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=1.5,
    num_inference_steps=8,
    progress=gr.Progress(track_tqdm=True),
):
    full_prompt = "cartoon styled korean" + prompt

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=full_prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

css = """
body {
    background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%);
    background-attachment: fixed;
    min-height: 100vh;
}

#col-container {
    margin: 0 auto;
    max-width: 640px;
    background-color: rgba(255, 255, 255, 0.85);
    border-radius: 16px;
    box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
    padding: 24px;
    backdrop-filter: blur(10px);
}

.gradio-container {
    background: transparent !important;
}

.gr-button-primary {
    background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important;
    border: none !important;
    transition: all 0.3s ease;
}

.gr-button-primary:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3);
}

.gr-form {
    border-radius: 12px;
    background-color: rgba(255, 255, 255, 0.7);
}

.gr-accordion {
    border-radius: 12px;
    overflow: hidden;
}

h1 {
    background: linear-gradient(90deg, #6b9dfc, #8c6bfc);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    font-weight: 800;
}
"""

with gr.Blocks(theme="apriel", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt copied from the previous website",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, 
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=1.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=8, 
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)