Spaces:
Running
on
A10G
Running
on
A10G
File size: 5,722 Bytes
400f5fc 6e5e1d5 98d097f 6e5e1d5 13da042 6e5e1d5 0649cb9 6e5e1d5 88f16e0 6e5e1d5 1145832 6e5e1d5 f807c45 6e5e1d5 98d097f 400f5fc 98d097f 400f5fc a04d240 5d40972 400f5fc 13da042 5d40972 a18405b 5d40972 6e5e1d5 88f16e0 6e5e1d5 62e8450 7e338ff 6e5e1d5 7e338ff 6e5e1d5 08f603c 6e5e1d5 08f603c 6e5e1d5 c186777 6e5e1d5 4993a5f 6e5e1d5 88f16e0 6e5e1d5 88f16e0 6e5e1d5 7e338ff 6e5e1d5 0691ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os, gc
import gradio as gr
import numpy as np
import random
from transformers import CLIPTokenizer, CLIPFeatureExtractor
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import torch
torch.cuda.empty_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.bfloat16
tokenizer = CLIPTokenizer.from_pretrained(
"openai/clip-vit-base-patch32", # or clip-vit-large if you prefer
use_fast=True
)
feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
# 3) Dispatch & load in FP16 with offloading
pipe = DiffusionPipeline.from_pretrained(
model_repo_id,
scheduler=FlowMatchEulerDiscreteScheduler.from_pretrained(
model_repo_id,
subfolder="scheduler",
shift=5,
use_safetensors=True
),
tokenizer=tokenizer,
feature_extractor=feature_extractor,
torch_dtype=torch.bfloat16, # load weights in half-precision
use_safetensors=True
)
# 4) Memory savings hooks (all on your single GPU + CPU offload)
pipe.enable_attention_slicing() # slice big attention maps
pipe.vae.enable_slicing() # slice VAE decode
pipe.enable_xformers_memory_efficient_attention() # if xformers is installed
pipe.enable_model_cpu_offload() # offload idle submodules to CPU
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=1.5,
num_inference_steps=8,
progress=gr.Progress(track_tqdm=True),
):
full_prompt = "cartoon styled korean" + prompt
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=full_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
css = """
body {
background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%);
background-attachment: fixed;
min-height: 100vh;
}
#col-container {
margin: 0 auto;
max-width: 640px;
background-color: rgba(255, 255, 255, 0.85);
border-radius: 16px;
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
padding: 24px;
backdrop-filter: blur(10px);
}
.gradio-container {
background: transparent !important;
}
.gr-button-primary {
background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important;
border: none !important;
transition: all 0.3s ease;
}
.gr-button-primary:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3);
}
.gr-form {
border-radius: 12px;
background-color: rgba(255, 255, 255, 0.7);
}
.gr-accordion {
border-radius: 12px;
overflow: hidden;
}
h1 {
background: linear-gradient(90deg, #6b9dfc, #8c6bfc);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 800;
}
"""
with gr.Blocks(theme="apriel", css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt copied from the previous website",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=1.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(mcp_server=True) |