File size: 4,779 Bytes
6e5e1d5
 
 
 
 
13da042
6e5e1d5
 
 
88f16e0
6e5e1d5
 
1145832
6e5e1d5
 
 
09fc56c
13da042
 
 
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
88f16e0
 
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f603c
 
 
 
 
 
6e5e1d5
 
 
08f603c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e5e1d5
 
 
c186777
6e5e1d5
 
 
 
 
 
4993a5f
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f16e0
6e5e1d5
 
 
 
 
 
 
88f16e0
6e5e1d5
 
 
 
 
 
4993a5f
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
0691ff2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import numpy as np
import random

import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, use_fast=True)

pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)

pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=65)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=1.5,
    num_inference_steps=8,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

css = """
body {
    background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%);
    background-attachment: fixed;
    min-height: 100vh;
}

#col-container {
    margin: 0 auto;
    max-width: 640px;
    background-color: rgba(255, 255, 255, 0.85);
    border-radius: 16px;
    box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
    padding: 24px;
    backdrop-filter: blur(10px);
}

.gradio-container {
    background: transparent !important;
}

.gr-button-primary {
    background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important;
    border: none !important;
    transition: all 0.3s ease;
}

.gr-button-primary:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3);
}

.gr-form {
    border-radius: 12px;
    background-color: rgba(255, 255, 255, 0.7);
}

.gr-accordion {
    border-radius: 12px;
    overflow: hidden;
}

h1 {
    background: linear-gradient(90deg, #6b9dfc, #8c6bfc);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    font-weight: 800;
}
"""

with gr.Blocks(theme="apriel", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt copied from the previous website",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, 
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=1.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=8, 
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            "cartoon styled korean" + prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)