chong.zhang
update
eec9b94
raw
history blame
5.06 kB
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import torch
from typing import Callable
import re
import inflect
from inspiremusic.cli.model import InspireMusicModel
from inspiremusic.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
from inspiremusic.wavtokenizer.decoder.pretrained import WavTokenizer
class InspireMusicFrontEnd:
def __init__(self,
configs: Callable,
get_tokenizer: Callable,
llm_model: str,
flow_model: str,
music_tokenizer_dir: str,
audio_tokenizer_dir: str,
instruct: bool = False,
fast: bool = False,
fp16: bool = True,
allowed_special: str = 'all'):
self.tokenizer = get_tokenizer()
self.audio_tokenizer_dir = audio_tokenizer_dir
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.bandwidth_id = torch.tensor([0]).to(self.device)
self.wavtokenizer = WavTokenizer.from_pretrained_feat(f"{audio_tokenizer_dir}/config.yaml", f"{audio_tokenizer_dir}/model.pt").to(self.device)
self.model = InspireMusicModel(configs['llm'], configs['flow'], configs['hift'], configs['wavtokenizer'], fast, fp16)
self.model = self.model.load(llm_model, flow_model, music_tokenizer_dir, audio_tokenizer_dir)
self.instruct = instruct
self.allowed_special = allowed_special
self.inflect_parser = inflect.engine()
def _extract_text_token(self, text):
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
return text_token, text_token_len
def _extract_audio_token(self, audio, sample_rate=24000):
audio = torch.tensor(audio, dtype=torch.float32, device=self.device)
_, audio_token = self.wavtokenizer.encode_infer(audio, bandwidth_id=self.bandwidth_id)
audio_token = audio_token.squeeze(0)
audio_token_len = torch.tensor([audio_token.shape[1]], dtype=torch.int32, device=self.device)
return audio_token, audio_token_len
def text_normalize(self, text, split=True):
text = text.strip()
if contains_chinese(text):
text = text.replace("\n", "")
text = replace_blank(text)
text = replace_corner_mark(text)
text = text.replace(".", "、")
text = text.replace(" - ", ",")
text = remove_bracket(text)
text = re.sub(r'[,,]+$', '。', text)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
else:
text = spell_out_number(text, self.inflect_parser)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
if split is False:
return text
return texts
def frontend_text_to_music(self, text, time_start, time_end, chorus):
text_token, text_token_len = self._extract_text_token(text)
model_input = {"text": text, "audio_token": None, "audio_token_len": None,
"text_token": text_token, "text_token_len": text_token_len,
"embeddings": [time_start, time_end, chorus], "raw_text":text}
return model_input
def frontend_continuation(self, text, audio, time_start, time_end, chorus, target_sr=24000):
if text is None:
text_token = None
text_token_len = None
else:
text_token, text_token_len = self._extract_text_token(text)
audio_token, audio_token_len = self._extract_audio_token(audio, target_sr)
model_input = {"text": text, "audio_token": audio_token, "audio_token_len": audio_token_len,
"text_token": text_token, "text_token_len": text_token_len,
"embeddings": [time_start, time_end, chorus], "raw_text":text}
return model_input